Brief solutions to Quiz 7

Dec 21, 2021

1. Find the volume of the region bounded by $z \geq 0, z \leq x$ and $x^{2}+y^{2} \leq 9$ (i.e. above the $x y$ plane, below the plane $x=z$ and inside the cylinder $x^{2}+y^{2}=9$).
Ans:
See page 2-3 of Lecture 21 note.
2. Use two different methods (disks/washers and cylindrical shells) to find the volume of revolution obtained by rotating the region $\left\{0 \leq x \leq 2, x^{2} \leq y \leq 2 x\right\}$ around the x axis.

Ans:
Method of disks(washers):

$$
V=\int_{0}^{2} \pi\left((2 x)^{2}-\left(x^{2}\right)^{2}\right) d x=\left.\pi\left(\frac{4}{3} x^{3}-\frac{1}{5} x^{5}\right)\right|_{0} ^{2}=\frac{64}{15} \pi
$$

Method of cylindrical shells:

$$
V=\int_{0}^{4} 2 \pi y\left(\sqrt{y}-\frac{y}{2}\right) d y=\left.2 \pi\left(\frac{2}{5} y^{\frac{5}{2}}-\frac{1}{6} y^{3}\right)\right|_{0} ^{4}=\frac{64}{15} \pi
$$

3. Same as above, but change the rotation axis to y - axis.

Ans:

Method of disks(washers):

$$
V=\int_{0}^{4} \pi\left((\sqrt{y})^{2}-\left(\frac{y}{2}\right)^{2}\right) d y=\left.\pi\left(\frac{1}{2} y^{2}-\frac{1}{12} y^{3}\right)\right|_{0} ^{4}=\frac{8}{3} \pi
$$

Method of cylindrical shells:

$$
V=\int_{0}^{2} 2 \pi x\left(2 x-x^{2}\right) d x=\left.2 \pi\left(\frac{2}{3} x^{3}-\frac{1}{4} x^{4}\right)\right|_{0} ^{2}=\frac{8}{3} \pi
$$

