Brief solutions to Quiz 5

Nov 23, 2021

1. (30 pts) Find absolute minimum and absolute maximum of $f(x)=\frac{1}{x}+\ln x$ on the interval $[0.5,4]$. For your reference, $\ln 2 \approx 0.6931$.
Ans:
$f^{\prime}(x)=\frac{-1}{x^{2}}+\frac{1}{x}=\frac{x-1}{x^{2}}$.
Critical points in $(0.5,4): x=1$ only.
Compare values of $f(0.5), f(1)$ and $f(4)$ shows that $f(1)=$ absolute minimum, $f(4)=$ absolute maximum.
2. $(20+20 \mathrm{pts})$ Suppose that $f^{\prime \prime}$ is continuous on $[a, b]$ and f has 3 distinct zeros on $[a, b]$. Show that $f^{\prime \prime}$ has at least one zero in (a, b). First state clearly the content of theorem you use (need not prove the theorem).
Ans:
Rolle's Theorem or Mean Value Theorem (both applicable): see textbook.
Apply Roll's Theorem to f to get two distinct zeros of f^{\prime}. Then apply Roll's Theorem again to f^{\prime} to get a zero of $f^{\prime \prime}$.
3. (30 pts) Find all critical points of $f(x)=x^{\frac{2}{3}}(x-4)$. For each one of them, use first derivative test to determine whether it corresponds to a local minimum, a local maximum or neither.
Ans:
See page 9 of Lecture 14 note.
4. Common mistakes in problem 3:

Figure 1: Common mistakes to problem 3-1

Figure 2: Common mistakes to problem 3-2

Figure 3: Common mistakes to problem 3-3

