Calculus I, Fall 2021

Brief solutions to Quiz 5

Nov 23, 2021

1. (30 pts) Find absolute minimum and absolute maximum of $f(x) = \frac{1}{x} + \ln x$ on the interval [0.5, 4]. For your reference, $\ln 2 \approx 0.6931$.

Ans:

$$f'(x) = \frac{-1}{x^2} + \frac{1}{x} = \frac{x-1}{x^2}.$$

Critical points in (0.5, 4): x = 1 only.

Compare values of f(0.5), f(1) and f(4) shows that f(1) = absolute minimum, f(4) = absolute maximum.

2. (20+20 pts) Suppose that f'' is continuous on [a, b] and f has 3 distinct zeros on [a, b]. Show that f'' has at least one zero in (a, b). First state clearly the content of theorem you use (need not prove the theorem).

Ans:

Rolle's Theorem or Mean Value Theorem (both applicable): see textbook.

Apply Roll's Theorem to f to get two distinct zeros of f'. Then apply Roll's Theorem again to f' to get a zero of f''.

3. (30 pts) Find all critical points of $f(x) = x^{\frac{2}{3}}(x-4)$. For each one of them, use first derivative test to determine whether it corresponds to a local minimum, a local maximum or neither.

Ans:

See page 9 of Lecture 14 note.

4. Common mistakes in problem 3:

Figure 1: Common mistakes to problem 3-1

71)=0 $f(x) = \chi^{\frac{1}{3}}(x-4) = \chi^{\frac{5}{3}} - 4\chi^{\frac{3}{3}}$ $(x) = \frac{3}{3}\chi^{\frac{1}{3}} - \frac{8}{3}\chi^{\frac{1}{3}} = 0 \qquad X = 0 \text{ or } \frac{8}{5}$ + $\chi = \frac{8}{5} \Rightarrow lucal minimum$ $\chi = 0 \Rightarrow local maximum$ 0

Figure 2: Common mistakes to problem 3-2

Cor
$$b=0$$
. other isn't $=$) there is two zero in (a.b)
a ± 0 , $b \pm 0 =$) there is three zero in (a.b)
 $=$) $\int f''$ has at least one zero in (a.b)
 $3 \int (x) = \chi^{\frac{5}{3}} + \chi^{\frac{5}{3}}$, $\int f(x) = \frac{5}{5}\chi^{\frac{5}{3}} - \frac{8}{3}\chi^{\frac{1}{3}} = (\frac{5}{3}\chi - \frac{8}{3})\chi^{\frac{1}{3}}$
 $\int (\frac{8}{5}) = \frac{5}{5}(0) = 0$
 $\int f(x)$ exists for all $\chi \in \mathbb{R}$
i. critical paints only appear where $f(x) = 0$
critical points $= (0, f(0))$, $(\frac{8}{5}, f(\frac{8}{5}))$

Figure 3: Common mistakes to problem 3-3