Brief solutions to Quiz 4

Nov 16, 2021

1. $(24+16 \mathrm{pts})$ Write down domains and ranges of all six inverse trigonometric functions. Derive the formula for $\left(\cos ^{-1}\right)^{\prime}$ (pay attention to the ${ }^{\prime}+^{\prime}$ or ${ }^{\prime}-^{\prime}$ sign in your formula and explain).

Ans:
Domains and ranges: See page 3 of Lecture 11 note, or page 62 and page 201 of the textbook (24 pts).
Let $\theta=\cos ^{-1}(x)$,

$$
\frac{d}{d x} \cos ^{-1}(x)=\frac{1}{\frac{d}{d \theta} \cos (\theta)}=\frac{1}{-\sin \theta} \quad(4 \mathbf{p} \mathbf{t s})
$$

Since $\sin ^{2} \theta+\cos ^{2} \theta=1$ and $\theta \in[0, \pi]$, it follows that $\sin \theta \geq 0$ therefore $\sin \theta=$ $+\sqrt{1-x^{2}}$ (8 pts).
Answer: $\frac{d}{d x} \cos ^{-1}(x)=\frac{-1}{\sqrt{1-x^{2}}}(\mathbf{4} \mathbf{~ p t s})$
2. $(15+15 \mathrm{pts})$ Use the linear approximation formula for $(1+x)^{k}$ near $x=0$ to get an approximate value of $\frac{1}{\sqrt{0.99}}$ and give an estimate of the error for this approximation (i.e. find out \mid true value - approximation $\mid \leq \cdots$). Need not derive the formula you use.

Ans:

$$
\begin{gathered}
\frac{1}{\sqrt{0.99}}=(1-0.01)^{\frac{-1}{2}} \approx\left(1-0.01 \frac{-1}{2}\right)=1.005 \\
\frac{1}{\sqrt{0.99}}=f(x)=(1+x)^{\frac{-1}{2}}, \quad x=-0.01 \\
\left|\frac{1}{\sqrt{0.99}}-1.005\right| \leq \frac{1}{2} \max _{-0.01 \leq c \leq 0}\left|f^{\prime \prime}(c)\right| \cdot 0.01^{2} \\
f^{\prime \prime}(c)=\frac{-1}{2} \cdot \frac{-3}{2}(1+c)^{\frac{-5}{2}}
\end{gathered}
$$

therefore

$$
\left|\frac{1}{\sqrt{0.99}}-1.005\right| \leq \frac{1}{2}\left|f^{\prime \prime}(-0.01)\right| \cdot 0.01^{2}=\frac{3}{8} \cdot 0.99^{\frac{-5}{2}} \cdot 0.01^{2}
$$

3. $(15+15 \mathrm{pts})$ Let

$$
f(x)=\left\{\begin{aligned}
x^{2} \sin \left(\frac{1}{x}\right), & x \neq 0 \\
0, & x=0
\end{aligned}\right.
$$

Is f differentiable at $x=0$? Is f twice differentiable at $x=0$? Start with definitions of $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ and explain.

Ans:

$$
\begin{gathered}
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x}\right)-0}{x-0}=0 \\
f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right), \quad x \neq 0 \\
\lim _{x \rightarrow 0} f^{\prime}(x) \text { does not exist }
\end{gathered}
$$

So, f^{\prime} is not continuous at $x=0$, therefore not differentiable at $x=0$ and

$$
f^{\prime \prime}(0)=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0} \quad \text { does not exist }
$$

