Brief solutions to Quiz 3

Oct 26, 2021

1. (a) (16 pts) State precise definition of $\lim _{x \rightarrow \infty} f(x)=L$.
(b) (20 pts) Use it to prove that $\lim _{x \rightarrow \infty} \frac{1}{x}=0$.

Ans: See page 119 of the textbook.

Figure 1: Common mistakes to problem 1 (b)
2. For (a) and (b), just answer whether the statement is true or false. Need not explain.
(a) (8 pts) True or False? If $f(x)$ is continuous at $x=c$, then it is differentiable at $x=c$.
(b) (8 pts) True or False? If $f(x)$ is differentiable at $x=c$, then it is continuous at $x=c$.
(c) (16 pts) Choose either (a) or (b) to elaborate: prove it if true, find a counter example if false.

Ans: (a): False. (b): True. (either 8 pts or 0 pts, no partial credits)
(c): If answer (a): counter example: see page 5 of Lecture 05 note. 8 pts for correct example. 8 pts more for correct explanation.
If answer (b): see Theorem 1 in section 3.2 of the textbook.

Figure 2: A common mistake to problem 2(c)

Remark on part (c):

Many people chose to answer (a) for part (c) with the counter example $f(x)=|x|$. The true reason for this example to be 'not differentiable at $x=0$ ' is

$$
\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h} \neq \lim _{h \rightarrow 0^{-}} \frac{f(h)-f(0)}{h}
$$

and not

$$
\lim _{x \rightarrow 0^{+}} f^{\prime}(x) \neq \lim _{x \rightarrow 0^{-}} f^{\prime}(x)
$$

since $\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h}$ and $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)$ are two different quantities in general. They are the same for the function $f(x)=|x|$ but not always the same. The following is an example with $\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h}=0$, while $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)$ does not exist:

$$
f(x)=\left\{\begin{aligned}
x^{2} \sin \left(\frac{1}{x}\right), & x>0 \\
0, & x=0
\end{aligned}\right.
$$

3. Use the derivative product rule to evaluate

$$
(a)(16 \mathrm{pts}) \quad \frac{d^{4}}{d x^{4}}(f(x) g(x)) \quad(b)(16 \mathrm{pts}) \quad \frac{d}{d x}\left(f_{1}(x) f_{2}(x) f_{3}(x) f_{4}(x)\right)
$$

Correct answer without derivation receives full credits. If you are sure, just write down the answer directly (and check twice).
Incorrect answer with detailed derivation (starting from $n=2$, then $n=3$, then $n=4$, etc.) will probably receive partial credits if the mistakes are only minor. If you are not sure, try to derive it step by step.

Ans:
(a):

$$
f^{\prime \prime \prime \prime}(x) g(x)+4 f^{\prime \prime \prime}(x) g^{\prime}(x)+6 f^{\prime \prime}(x) g^{\prime \prime}(x)+4 f^{\prime}(x) g^{\prime \prime \prime}(x)+f(x) g^{\prime \prime \prime \prime}(x)
$$

(b):
$f_{1}^{\prime}(x) f_{2}(x) f_{3}(x) f_{4}(x)+f_{1}(x) f_{2}^{\prime}(x) f_{3}(x) f_{4}(x)+f_{1}(x) f_{2}(x) f_{3}^{\prime}(x) f_{4}(x)+f_{1}(x) f_{2}(x) f_{3}(x) f_{4}^{\prime}(x)$

