Brief solutions to Midterm 02

Dec 09, 2021. 10 pts each problem.

1. ($5 \mathrm{pts}+5 \mathrm{pts}$) Write down domains and ranges of all six inverse trigonometric functions. Derive the formula for $\left(\mathrm{csc}^{-1}\right)^{\prime}$ (pay attention to the ${ }^{\prime}+^{\prime}$ or ${ }^{\prime}-^{\prime}$ sign in your formula and explain).
Ans:
See quiz 4 solution (please do read).
2. ($5 \mathrm{pts}+5 \mathrm{pts}$) Use the linear approximation to find an approximate value of $\sqrt{1.001}$ and give an estimate of the error for this approximation. Need not derive the formula you use.

Ans:
Linear approximation $=1+\frac{1}{2} 0.001=1.0005$.
Error $\leq\left|\frac{1}{2} \frac{1}{2}\left(\frac{-1}{2}\right) 0.001^{2}\right|=1.25 \cdot 10^{-7}$.
3. $(2 \mathrm{pts}+8 \mathrm{pts})$ True or False? If true, prove it. If false, give a counter example. If $|f(x)-(3 x+2)| \leq|x|^{1.5}$ for all $x \in R$, then f is differentiable at $x=0$.

Ans:

True. Since $\lim _{x \rightarrow 0} \frac{f(x)-(3 x+2)}{|x-0|}=0$. Therefore $3 x+2$ is the linear approximation of f near $x=0$ and $f^{\prime}(0)=3$.
4. (5 pts +5 pts) Let f be a differentiable function defined on $\{x \geq 0\}$ satisfying
(a) $f(0)=-1$,
(b) $f^{\prime}(x) \geq 1 / 2$ for all $x \geq 0$.

Show that $f(x)=0$ has exactly one solution on $\{x \geq 0\}$.
Ans:
First, we show that $f(3)>0$. Otherwise, if $f(3) \leq 0$, then by Mean Value Theorem, there exists a $c \in(0,3)$ such that $f^{\prime}(c)=\frac{f(3)-f(0)}{3-0} \leq \frac{0-(-1)}{3-0}=\frac{1}{3}$, a contradiction.
Secondly, since $f(0)<0, f(3)>0$, by Intermediate Value Theorem, there exists a $c_{1} \in(0,3)$ such that $f\left(c_{1}\right)=0$.
Finally, we show that $f(x)=0$ has only one solution. Suppose not, we will have $c_{1} \geq 0$, $c_{2} \geq 0, c_{1} \neq c_{2}$ such that $f\left(c_{1}\right)=f\left(c_{2}\right)=0$. From Rolle's Theorem, there exists an $\alpha \in\left(c_{1}, c_{2}\right)$ such that $f^{\prime}(\alpha)=0$, a contradiction.
5. $(3 \mathrm{pts}+2 \mathrm{pts}+5 \mathrm{pts})$ Find all critical points of $f(x)=x^{\frac{1}{3}}(x-4)$ on $[-1,5]$. For each one of them, use first derivative test to determine whether it corresponds to a local minimum, a local maximum or neither. Then find the absolute max and min on $[-1,5]$.

Ans:
$f^{\prime}(x)=\frac{4}{3} x^{\frac{-2}{3}}(x-1)$. Critical points: $x=0, x=1$.
$f^{\prime}(x)<0$ on $[-1,1), f^{\prime}(x)>0$ on $(1,5)$. So $f(1)=$ only local min, therefore absolute min.
Local max: $f(-1)=5, f(5)=5^{\frac{1}{3}}$. Compare values of $f(-1)$ and $f(5)$, we conclude that $f(-1)=$ absolute max.
$x=0$ is neither local min nor local max.
6. (4 pts $+6 \mathrm{pts})$ Let

$$
f(x)=\left\{\begin{aligned}
e^{\left(\frac{-1}{x^{2}}\right)}, & x \neq 0 \\
0, & x=0
\end{aligned}\right.
$$

Is f differentiable at $x=0$? Is f twice differentiable at $x=0$? Start with definitions of $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ and explain.

Ans:

Yes. Yes.
$f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\frac{1}{x}}{e^{x^{-2}}}$ (apply L'Hôpital's Rule for $\frac{ \pm \infty}{\infty}$ once) $=\lim _{x \rightarrow 0} \frac{-x^{-2}}{-2 x^{-3} e^{x^{-2}}}=$ $\lim _{x \rightarrow 0} \frac{x}{2 e^{x^{-2}}}=0$.
$f^{\prime}(x)=\frac{2}{x^{3}} e^{\left(\frac{-1}{x^{2}}\right)}$ for $x \neq 0$.
$f^{\prime \prime}(0)=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\frac{2}{x^{4}}}{e^{\frac{1}{x^{2}}}}=\lim _{x \rightarrow 0} \frac{2 x^{-4}}{e^{x^{-2}}}$ (apply L'Hôpital's Rule for $\frac{ \pm \infty}{\infty}$ twice) $=$
$\lim _{x \rightarrow 0} \frac{-8 x^{-5}}{-2 x^{-3} e^{x^{-2}}}=\lim _{x \rightarrow 0} \frac{4 x^{-2}}{e^{x^{-2}}}=\lim _{x \rightarrow 0} \frac{-8 x^{-3}}{-2 x^{-3} e^{x^{-2}}}=\lim _{x \rightarrow 0} \frac{4}{e^{x^{-2}}}=0$
7. (4 pts +6 pts) Evaluate (a) $\lim _{x \rightarrow 0^{+}} x^{x}$
(b) $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$

Ans:
(a): See quiz 6 solution.
(b): Let $f(x)=x^{2}, g(x)=\sin ^{2}(x)$ and denote k-th derivative of f, g by $f_{k}(x)=f^{(k)}(x)$, $g_{k}(x)=g^{(k)}(x)$.
We have

$$
\begin{gathered}
f_{0}(x)=x^{2}, \quad f_{1}(x)=2 x, \quad f_{2}(x)=2, \quad f_{3}(x)=0, \quad f_{4}(x)=0 \\
g_{0}(x)=\sin ^{2} x, \quad g_{1}(x)=\sin 2 x, \quad g_{2}(x)=2 \cos 2 x, \quad g_{3}(x)=-4 \sin 2 x, \quad g_{4}(x)=-8 \cos 2 x
\end{gathered}
$$

$$
\begin{gathered}
\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)=\lim _{x \rightarrow 0} \frac{g_{0}(x)-f_{0}(x)}{f_{0}(x) g_{0}(x)}\left("=\left(\frac{0}{0}\right) "\right)=\lim _{x \rightarrow 0} \frac{g_{1}(x)-f_{1}(x)}{f_{0}(x) g_{1}(x)+f_{1}(x) g_{0}(x)}\left("=\left(\frac{0}{0}\right) "\right) \\
=\lim _{x \rightarrow 0} \frac{g_{2}(x)-f_{2}(x)}{f_{0}(x) g_{2}(x)+2 f_{1}(x) g_{1}(x)+f_{2}(x) g_{0}(x)}\left("=\left(\frac{0}{0}\right) "\right) \\
=\lim _{x \rightarrow 0} \frac{g_{3}(x)-f_{3}(x)}{f_{0}(x) g_{3}(x)+3 f_{1}(x) g_{2}(x)+3 f_{2}(x) g_{1}(x)+f_{3}(x) g_{0}(x)}\left("=\left(\frac{0}{0}\right) "\right) \\
=\lim _{x \rightarrow 0} \frac{g_{4}(x)-f_{4}(x)}{f_{0}(x) g_{4}(x)+4 f_{1}(x) g_{3}(x)+6 f_{2}(x) g_{2}(x)+4 f_{3}(x) g_{1}(x)+f_{4}(x) g_{0}(x)}=\frac{-8 \cos 0}{6 \cdot 2 \cdot 2 \cos 0}=\frac{-1}{3}
\end{gathered}
$$

8. (5 pts $+5 \mathrm{pts})$ Solve for $y(x)$ on $x<0$ from $\quad y^{\prime \prime}(x)=x^{-2}, \quad y(-1)=1, \quad y^{\prime}(-1)=2$.

Ans:
$y^{\prime}(x)=y^{\prime}(-1)+\int_{-1}^{x} t^{-2} d t=2+\left.\left(-t^{-1}\right)\right|_{-1} ^{x}=-\frac{1}{x}+1$
$y(x)=y(-1)+\int_{-1}^{x}\left(-\frac{1}{t}+1\right) d t=1+\left.(-\ln |t|+t)\right|_{-1} ^{x}=-\ln (-x)+x+2$
9. ($2 \mathrm{pts}+2 \mathrm{pts}+6 \mathrm{pts}$) State both parts of Fundamental Theorem of Calculus, prove that 'part 1 implies part 2'. If you can't prove this, you could prove 'part 1' instead.
Ans:
See the textbook or Lecture 19 note.
10. (5 pts $+5 \mathrm{pts})$ Evaluate (a) $\int_{1}^{2} \frac{1}{x\left(1+\ln ^{2} x\right)} d x \quad$ (b) $\int_{0}^{4} x \sqrt{2 x+1} d x$

Ans:
(a): $=\int_{1}^{2} \frac{1}{\left(1+\ln ^{2} x\right)} d \ln x=\int_{1}^{2} \tan ^{-1}(\ln x)=\tan ^{-1}(\ln 2)$
(b): See Section 5.5, Example 6 for the indefinite integral part, then substitute to evaluate the definite integral.
11. (2 pts $+8 \mathrm{pts})$ True or False? If true, prove it. If false, give a counter example.

If $y=f(x)$ is differentiable at $x=c$ then it is continuous at $x=c$.
Ans:
See midterm 1 solution (same problem, please do read).
12. $($ average $=4.86 \mathrm{pts})$ Evaluate $\frac{d}{d x}(\tan x)^{\sin x}, 0<x<\frac{\pi}{2}$.

Ans:

See midterm 1 solution (similar (almost the same) problem, please do read).

