Brief solutions to selected problems in homework week 09

1. Section 4.1, problem 77:
$f^{\prime}(x)=\frac{2}{3}(x-2)^{\frac{-1}{3}}$
$f^{\prime}(x)>0$ on $x>2, f^{\prime}(x)<0$ on $x<2$. $f^{\prime}(2)$ does not exist.
So $x=2$ is the only critical point, and the only possible point where $f(x)$ has a local extreme.
Check the signs of $f^{\prime}(x)$ on $x>2$ and $x<2$. It follows that $f(x)$ indeed has a local \min at $x=2$. Since it is the only local min, it is also the absolute min.
2. Section 4.2, problem 19:

Figure 1: Section 4.3, problem 19
3. Section 4.2, problem 65:

Figure 2: Section 4.2, problem 65
4. Section 4.3, problem 74:

Figure 3: Section 4.3, problem 74
5. Section 4.3, problem 77:

$$
\begin{aligned}
& f^{\prime}(x)=e^{x}-2 . f(x)=0 \text { at } \ln (2) \\
& f^{\prime}(x)<0 \text { on }[0 . \ln (2)) \\
& f^{\prime}(x)>0 \text { on } \quad(\ln (2), 1] \\
& f \text { has an absolute minimum at at lan }(2) \\
& f(0)=1 \quad f(1)=e-2 \\
& \frac{f b s o l u t e}{} \text { maximcon }
\end{aligned}
$$

Figure 4: Section 4.3, problem 77

