Calculus I, Fall 2021 (Thomas' Calculus Early Transcendentals 13ed), http://www.math.nthu.edu.tw/~wangwc/

Brief solutions to selected problems in homework week 04

Given
$$\varepsilon = \frac{|f_{col}| > 0}{2} > 0$$
, there exists $\delta > 0$ such that
 $0 \le |x-c| < \delta \Rightarrow |f_{col}| - f_{col}| < \varepsilon \Rightarrow Gt c$, $\lim_{x \to c} f_{col} \Rightarrow f_{col}$
 $\frac{|f_{col}|}{2} < f_{col} - f_{col} < \frac{|f_{col}|}{2} = 0$ if $f_{col} > 0 =$
 $\frac{|f_{col}|}{2} + f_{co} < f_{col} < \frac{|f_{col}|}{2} + f_{col} = 0 < -\frac{f_{col}}{2} + f_{col} < f_{col} = f_{col} < f_{col}$
 $\varepsilon = \frac{|f_{col}|}{2} + f_{col} < \frac{|f_{col}|}{2} + f_{col} = 0 < -\frac{f_{col}}{2} + f_{col} < f_{col} = \frac{f_{col}}{2} < 0$
 $\varepsilon = \frac{f_{col}}{2} + f_{col} < 0 =$
 $f_{col} < f_{col} = \frac{f_{col}}{2} < 0$
 $f_{col} < f_{col} < \frac{f_{col}}{2} = \frac{f_{col}}{2} < 0$

Figure 1: Correct answer section 2.5, problem 68 (only minor mistake)

suppose f(c) > 0 · by continuity, for any ε there exists a such that $0 < |X-c| < \delta \Rightarrow |f(w) - f(c)| < \varepsilon$ $c \in |X-c| < \delta \Rightarrow |f(w) - f(c)| < \varepsilon$ $c \in |X-c| < \delta \Rightarrow |f(w) - f(c)| < \varepsilon$ $take \varepsilon = \frac{f(0)}{2} \Rightarrow 1$ for $f(x) < \frac{2}{2}f(c)$ if $0 < |X-c| < \delta$ and corresponding δ $\therefore f(x)$ have the same sign as f(c) for 0 $take \varepsilon = -\frac{f(c)}{2}$

Figure 2: A common mistake of section 2.5, problem 68. One should at least state how to choose ε when f(c) < 0