Homework Assignment for Chapter 03

1. Section 3.2: problems $17,54,57,48$.
2. Section 3.3: problems 47, 55, 67, 70.
3. $\frac{d^{n}}{d x^{n}}(f(x) g(x))=$? Try $n=2,3, \cdots$ and conclude the general formula. Memorize the result.
4. Use product rule to show (and memorize) that

$$
\begin{aligned}
\frac{d}{d x}\left|\begin{array}{cc}
f_{11}(x) & f_{12}(x) \\
f_{21}(x) & f_{22}(x)
\end{array}\right| & =\left|\begin{array}{cc}
f_{11}^{\prime}(x) & f_{12}(x) \\
f_{21}^{\prime}(x) & f_{22}(x)
\end{array}\right|+\left|\begin{array}{cc}
f_{11}(x) & f_{12}^{\prime}(x) \\
f_{21}(x) & f_{22}^{\prime}(x)
\end{array}\right| \\
& =\left|\begin{array}{ll}
f_{11}^{\prime}(x) & f_{12}^{\prime}(x) \\
f_{21}(x) & f_{22}(x)
\end{array}\right|+\left|\begin{array}{cc}
f_{11}(x) & f_{12}(x) \\
f_{21}^{\prime}(x) & f_{22}^{\prime}(x)
\end{array}\right|
\end{aligned}
$$

What is the corresponding formula for a 3 by 3 determinant? How about 4 by 4, etc?
5. Section 3.5: problems 17, 49, 57, 58.
6. Section 3.6: Do as many as time permits from problems $51,53, \cdots, 77$.
7. Assume $g(2)=3, g^{\prime}(2)=0.1, f^{\prime}(2)=3, f^{\prime}(3)=4$ and $f^{\prime}(4)=5$. What is $\frac{d}{d x} f(g(x))$ at $x=2$?
8. Section 3.7: problems 27, 31, 42, 48.
9. Section 3.8: problems 7, 9, 37, 39, 51 (Hint: take \ln on both sides first), 65, 77, 89, 91, 98. 93, 95.
10. Section 3.9: problems 21, 23, 25, 33, 35, 39, 55.
11. Start with domain and range for \csc and $\csc ^{-1}$, derive the formula for the derivative of csc^{-1}.
12. Section 3.11: problems 9, 11, 17, 63, 64.
13. The error formula for linear approximation $L\left(x, x_{0}\right)$ (also denoted as $L(x)$ sometimes) is not mentioned explicitly in the textbook till a later Chapter. Just take it for granted and memorize it for now:

$$
f(x)-L\left(x, x_{0}\right)=\frac{1}{2} f^{\prime \prime}(c)\left(x-x_{0}\right)^{2}
$$

where c lies between x and x_{0}. As a consequence, we have an error bound

$$
\left|f(x)-L\left(x, x_{0}\right)\right| \leq \frac{1}{2}\left(\max _{c \text { between } x \text { and } x_{0}}\left|f^{\prime \prime}(c)\right|\right)\left(x-x_{0}\right)^{2}
$$

Use this formula to give an estimate on the error of linear approximation for problem 17 (b) of Section 3.11.

