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1 Introduction

During the past few decades, scientists have been exploring fractional calculus as a tool for
developing more sophisticated mathematical models that can accurately describe complex
anomalous systems

Po16, BuVa16, MeSi11, Va17
[36, 8, 32, 41]. Among different fractional operators, the fractional Lapla-

cian has been intensively studied in the recent literature. It corresponds to one of the most
important cases where the jump direction in the Lévy process is isotropic. The fractional
Laplacian has been used in place of the integer-order Laplacian in many applications, in-
cluding, for example, Fractional reaction-diffusion equations

Ya02
[45] Quasi-geostrophic equation

CoWu99
[12] Porous medium equation

AkScSe16, PaQuRoVa11
[4, 35] The Schrödinger equation

La00
[24] and Ultrasound equation

TrCo10, ChHo04
[40, 10]

In this MoST project, we will focus on the fractional-in-space Allen-Cahn equations
(FiSAC):

ut + Lu+ f(u) = 0 in Ω
u = 0 on ∂Ω

(1) fisac

and aim to develop robust and efficient time discretization for (
fisac
1). Here

f(u) = u3 − u = F ′(u), where F (u) =
1

4
(u2 − 1)2

and L = ε2(−∆)
α/2
R is the Riesz fractional Laplacian with 1 < α < 2 (see section

def
1.1 for

definitions of various fractional Laplacians). Compared to standard Allen-Cahn equations,
the fractional model (

fisac
1) replaces the standard Laplacian by fractional derivative.

In recent years, there has been significant interest in using the diffusive-interface phase
field approach for modeling the mesoscale morphological pattern formation and interface
motion. One of the very effective mathematical models describing these physical phenom-
ena is the Allen–Cahn equation introduced in 1979

AlCa79
[1]. Roughly speaking, the Allen-Cahn

equations (
fisac
1) describes regions with u ≈ 1 and u ≈ −1 grow and decay at the expense of one

another
AlCa79
[1]. It is noted that the FiSAC equation (

fisac
1) has attracted many attentions in recent

years. For example, Burrage et al.
BuHaKa12
[7] proposed an implicit finite element scheme, Bueno-

Orovio et al.
BuKaBu14
[6] considered the Fourier spectral methods. In

HoTaYa17
[18], the authors considered

the Crank-Nicolson time discretization in 1D.
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1.1 Definitions of fractional Laplacian in Rd and bounded domains
def

The fractional Laplacian in Rd can be defined in many equivalent ways. For example,

1. Fractional Laplacian in Rd using Fourier representation

F((−∆α/2u))(ξ) = |ξ|αF(u).

2. Fractional Laplacian in Rd using integral representation

(−∆)α/2u(x) = −cα,dPV

∫
Rd

u(x)− u(y)

|x− y|d+α
dy

where

cα,d =
2αΓ(d+α

2
)

πd/2
∣∣Γ(−α

2
)
∣∣

A more comprehensive review of various definitions of the fractional Laplacian in Rd and
their equivalence can be found in

Kw17
[23].

However, when these definitions are restricted to bounded domains, the associated bound-
ary conditions lead to distinct operators. Some of the mostly well known definitions include:

1. The Integral (Dirichlet) fractional Laplacian on Ω. The fractional Laplacian
of u(x), x ∈ Ω is defined through first extending u(x) to a function in Rd:

ũ(x) =

{
u(x), x ∈ Ω
0, x ∈ Ωc

and then the usual fractional Laplacian definition is used

(−∆)
α/2
I u(x) := (−∆)α/2ũ(x)

where the right hand side is defined through Fourier transform and its inverse

(−∆)α/2ũ := F−1(|ξ|αF ũ)

2. The Spectral fractional Laplacian on Ω.

The fractional operator is obtained via a spectral definition, that is

(−∆)
α/2
S u(x) :=

∑
i∈N

uiλ
α/2
i ϕi(x) (2) SLap

where ϕi, λi > 0 are eigenfunctions and eigenvalues of the standard Laplacian in Ω
with homogeneous Dirichlet boundary data,{

−∆ϕi = λiϕi, in Ω
ϕi = 0, on ∂Ω
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3. The Regional (Riesz) fractional Laplacian on Ω.

This definition is carried out through restricting the integration domain to Ω.

(−∆)
α/2
R u(x) = −cα,dPV

∫
Ω

u(x)− u(y)

|x− y|d+α
dy

where

cα,d =
2αΓ(d+α

2
)

πd/2
∣∣Γ(−α

2
)
∣∣

Further results on stochastic interpretation and analytic properties of these fractional Lapla-
cians can be found in

Li_etal18
[27].

In this MoST proposal, we consider fractional Laplacian on a bounded domain Ω ⊂ Rd

with zero Dirichlet boundary conditions (i.e. u = 0 on ∂Ω). Both the Fourier and integral
representation above can be naturally extended to bounded domains by extending u = 0
on Rd \ Ω (and remain equivalent). In practice, the integral representation version is more
convenient for numerical purpose on bounded domains and is the most widely used in the
literature.

2 Project Description

The fractional Allen–Cahn equation (
fisac
1) can be viewed an L2-gradient flow of the following

fractional analogue version of Ginzburg– Landau free energy functional

E(u) =

∫
Ω

F (u) +
1

2
uLu (3) GLfe

Similar to standard Allen-Cahn equations, the fractional model satisfies the energy decreasing
property:

d

dt
E(u) = −‖ut‖2 ≤ 0 (4)

With regarding to this nonlinear energy stability, many numerical works have been devoted
to the solutions of the (standard) Allen–Cahn equation, see, e.g.,

a4,Ey98,a7,a8,a9,a10,a16,a20,a23
[11, 14, 15, 16, 17, 19,

20, 46, 47]. In the past few years, the numerical stability has been mostly restricted to
this energy decreasing property. This is in particular becoming popular due to the convex
concave splitting idea of Eyre

Ey98
[14], which turns out to be very effective for gradient flows

but ends up with a nonlinear time stepping scheme.
To over come the difficulties associated with the nonlinear time stepping scheme, a con-

ventional wisdom is to perform a suitable operator splitting

L(u) = L0(u) +
(
L(u)− L0(u)

)
(5) evo2

and treat L0(u) and L(u) + f(u) − L0(u) separately. Typically, L0 is a dominant linear
operator. To stabilize the time stepping, L0(u) is discretized implicitly, while L(u) + f(u)−
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L0(u) is discretized explicitly. so that the time marching is stable with fast direct solvers for
the resulting linear system:

un+1 − un

∆t
+ L0(un+1) = L0(un)− L(un)− f(un), (6) be1

For example, for standard Allen-Cahn equations, one could take L0u = −ε2∆u + Su with
S > 0 large enough to stabilize the nonlinear term f(u). This results to the following linear
system:

un+1 − un

∆t
+ L0(un+1) = L0(un)− L(un)− f(un), (7) be1n

The resulting linear system

(
1

∆t
− ε2∆ + S)un+1 = gn (8) be2n

can be solved efficiently with FFT.
The situation is slightly different for the fractional model (

fisac
1) if we take

L0u = ε2(−∆)
α/2
R u+ Su, (9) sp1

as the corresponding linear system

(
1

∆t
+ ε2(−∆)

α/2
R + S)un+1 = gn (10) be3n

does not have a fast direct solver. Either an efficient preconditioner for the fractional operator
C + ε2(−∆)

α/2
R , or further splitting of the term ε2(−∆)

α/2
R is required:

L0u = ε2CMu+ Su, (11) sp2

where M in (
sp2
11) can be taken as a preconditioner, if available. The splitting (

sp1
9) results in a

preconditioned iterative scheme and the (
sp2
11) results in a direct scheme provided a suitable

splitting M is found. In previous MoST project, we found that the spectral fractional Lapla-
cian M = (−∆)

α/2
S can be solved by FFT and serves as an extremely good preconditioner

and can be applied in both approaches (
sp1
9) or (

sp2
11). See section

def
1.1 and

A2old
4.1 for details.

There have been several generalization of the stabilization to higher order schemes. A
well known 2nd order time discretization combines Crank-Nicolson method for L0(u) together
with 2nd order Adam-Bashforth for L(u)− L0(u) to get (CN-AB2)

un+1 − un

∆t
+L0(

un+1 + un

2
) =

3

2

(
L0(un)−L(un−f(un))

)
− 1

2

(
L0(un−1)−L(un−1−f(un−1))

)
(12) cnab2

In this MoST proposal, we consider an alternative stabilized semi-implicit second order
scheme (also known as predictor-corrector scheme

ShXu18b
[38]):

un+ 1
2 − un
∆t
2

+ L0(un+ 1
2 ) = (L0 − L)(un)− f(un)

un+1 − un

∆t
+ L0(

un+1 + un

2
) = (L0 − L)(un+ 1

2 )− f(un+ 1
2 )

(13) rk2
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Due to the presence of intermediate step un+ 1
2 in the scheme (

rk2
13), sharp stability estimate

is difficult to obtain in general. It is well believed that the system is stabilized as long as the
stabilizing term L0 is large enough. On the other hand, we have observed that the overall
absolute error also increases with L0.

For general (possibly nonlinear or nonlocal) elliptic operator Lu+ f(u), the second order
scheme (

rk2
13) is a natural generalization of (

be1
6) and retains all the numerical advantages. Both

steps in (
rk2
13) are uniquely solvable with fast solvers provided L0 is a suitable chosen constant

coefficient elliptic operator. The stability of (
rk2
13) is not clear in general. Numerical evidence

in
ShXu18b
[38] (and rigorous proof in some cases) suggests that (

rk2
13) is more robust and accurate

for gradient flows with strong anisotropic free energy. We believe this is due to lack of
extrapolation steps in (

rk2
13). In a preliminary analysis, we start with the the simplest case

where L is linear nonnegative self-adjoint, f = 0 and found a precise sufficient condition on
the stabilizing term L0 for the scheme (

rk2
13) to be unconditional stable (see section

ea
4.3). We

believe this is a strong indication for nonlinear stability of the stabilized scheme (
rk2
13) and

will also pursue in this direction for the current MoST proposal.

2.1 Potential difficulties and proposed method of resolution

In contrast to classical integer order PDEs, the main difficulty associated with numerical
computations of (

be3n
10) is that these operators are non-local, hyper-singular integral operators.

To solve (
be3n
10) accurately and efficiently, the central issues include:

(a) Accurate discretization of (
be3n
10).

(b) Fast evaluation of matrix-vector multiplication corresponding to the discretization of
(
be3n
10).

(c) Efficient preconditioning technique for the linear system resulting from (a), (b).

We will elaborate them in the following subsections. To simplify the presentation, we will
mainly explain these issues in the 1D setting (that is d = 1, Ω = [a, b]) and comment briefly
in the multi-dimensional case.

2.1.1 Accurate Structure Preserving Discretizations
known_disc

Since (
be3n
10) is a nonlocal operator, standard numerical discretization of the fractional Lapla-

cian (
be3n
10) inevitably leads to a dense matrix. This poses a main difficulty in all iterative

solvers as the matrix-vector multiplication is extremely expensive. Moreover, since the inte-
gral in (

be3n
10) is hyper-singular, a proper regularization procedure is required to evaluate the

integral accurately.
On the other hand, the fractional Laplace operator is translation-invariant. If the transla-

tion invariant property can be preserved numerically at the discrete level, the corresponding
discrete fractional Laplace operator gives rise to a Toeplitz matrix, thus the matrix-vector
multiplication in (

be3n
10) can be performed efficiently by FFT with O(N logN) complexity.
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The discrete translation-invariant property of (
be3n
10) (and hence the Toeplitz structure) is

possible only on uniform grids. We will thus restrict our discussion in this class of discretiza-
tions. Here we list a few known discretizations along this line:

1. One of the most widely adopted structure preserving spatial discretization is based on
the identity

PV

∫ b

a

u(x)− u(y)

|x− y|1+α
dy =

−∞∂
α
xu(x) + x∂

α
∞u(x)

2 cos(απ/2)
(14) id1

for smooth enough u, and the the Grünwald Letnikov formula (the Grünwald approx-
imation) for the left Riemann-Liouville fractional derivative −∞∂

α
x (with the under-

standing that u = 0 on x < a):

GL
a∂

α
xu(x) = lim

N→∞

1

hα

N∑
k=0

(−1)k
(
α
k

)
u(x− kh) (15) lGL

where N is the number of partition and h = (x−a)/N . A stable right-shifted approxi-
mation of the the Grünwald Letnikov formula (

lGL
15) is proposed in

MeTa04
[30] which leads to a

Toeplitz matrix with O(h) discretization error for the left Riemann-Liouville fractional
derivative

G =
1

hα


gα1 gα0 0 · · · 0
gα2 gα1 gα0 · · · 0
...

. . . . . . . . .
...

gαN−2

. . . . . . . . . gα0
gαN−1 gαN−2 · · · · · · gα1


where gα0 = 1,

gαk =
−(α− k + 1)

k
gαk−1

and h = (b− a)/N . A similar formula for x∂
α
∞u(x) leads to the matrix representation

for the right Riemann-Liouville fractional derivative GT .

The Grünwald approximation is later improved to second order accurate in
TiZhDe15
[39] by

way of a weighted and shifted combination of the first order Grünwald approximation,
retaining the Toeplitz structure. In addition to the Riesz fractional Laplacian, this
discretization can be generalized to variable coefficient Riemann-Liouville fractional
PDEs, the fractional diffusion operator can thus be represented by a linear combination
of diagonal-times-Toeplitz matrices, and therefore the matrix-vector multiplication can
be performed efficiently by FFT with O(N logN) complexity. As a consequence, almost
all the earlier works in 1D adopt these Grünwald discretizations. However, it is not
clear how to generalize the Grünwald approximation to the multi-dimensional fractional
Laplacian.

2. More recent structure preserving discretization of the fractional Laplacian are mostly
based on the Riesz representation (

be3n
10). In (

HuOb14
[21]), Huang and Oberman proposed to
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discretize the operator by dividing the integral in to singular and regular parts. For
the singular part, the authors use Taylor expansion and finite difference approximation
for |y| ≤ h. For the regular part |y| ≥ h, they approximate the integrand by stan-
dard polynomial interpolant. This results an 2nd order approximation of (

be3n
10) with a

Toeplitz matrix.

3. In
DuWyZh18
[13] Duo, van Wyk and Zhang discretized the Riesz fractional Laplacian by intro-

ducing a splitting parameter and formulate the fractional Laplacian as the weighted
integral, then approximated it by weighted trapezoidal rule. The results is also 2nd
order accurate a and leads to a Toeplitz matrix.

4. In
MiYi18
[33] Minden and Ying discretized the fractional Laplacian by subtracting a poly-

nomial times a cut off function to remove the singular part, then using trapezoidal
rule for the smooth part and finite difference approximation of the derivative for the
remaining part. The results is also 2nd order accurate a and leads to a Toeplitz ma-
trix and applies to multi-dimensional case. So far, this scheme appears to be the only
structure preserving discretization in multi-dimension.

5. In previous MoST project, we have develop a novel spatial discretization that can be
upgraded to 4th order in space very easily. See section

TW4
4.2 for details

2.1.2 Efficient Preconditioners for solving the Toeplitz-like matrices

In the constant coefficient case, the 1D fractional diffusion equation results in exact Toeplitz
matrices (with Backward Euler or higher order implicit time discretization). The fast itera-
tive solver for Toeplitz matrices is very well developed, see

ChNg96
[9] for a thorough review.

For the variable coefficient case, the resulting matrices are combinations of diagonal-
times-Toeplitz matrices. Most existing preconditioners fall into two categories:

• Circulant preconditioners as in
LeSu13, PaKeNgSu14, LiNgSu17
[25, 34, 26].

• Banded matrix preconditioners as in
WaWaSi10, WaWa11, JiLiZh15, LiYaJi14, ZhJiLi16
[42, 43, 22, 28, 48].

In previous MoST project (2019/08/01-2020/07/31), we proposed a novel preconditioner
based on the spectral fractional Laplacian (

SLap
2). Note that the spectral fractional Laplacian

and the Riesz fractional Laplacian (
be3n
10) are genuinely different operators. Nevertheless, nu-

merical evidence shows that they are spectrally equivalent. Moreover, the spectral fractional
Laplacian be easily inverted using Fast Discrete Sine Transform and serves as a perfect can-
didate of the preconditioner both in 1D and multi-dimensional cases. The results so far are
summarized in Appendix

A2old
4.1.

3 Conclusion

The fractional order PDE is a fast growing research subject on many aspects including theory,
numeric and applications. Unlike classical PDEs, the fractional PDE can describe a wider
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range of phenomenon which are important in many branches of science and engineering. In
this MoST proposal, we expect to be able to develop fast efficient numerical schemes for the
fractional model (

fisac
1) and conduct rigorous error analysis. Graduate students and postdocs

will definitely benefit significantly from participating this project.
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4 Appendix

4.1 Result of the previous MoST project (2019/08/01-2021/01/31)

, In this section, we report our progress of the MoST project on efficient preconditioner forA2old
the structure preserving discretization of the Riesz fractional Laplacian (

be3n
10).

The novelty of our approach is to use the spectral fractional Laplacian as the precondi-
tioning operator for various discretizations described in section

known_disc
2.1.1.

More precisely, consider the standard discrete Laplacian

−∆h =
1

h2


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2

 = PΛP−1
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where

P =


sin( π

N
) sin(2π

N
) . . . sin( (N−1)π

N
)

sin(2π
N

) sin(4π
N

) . . . sin(2(N−1)π
N

)
...

...
...

sin( (N−1)π
N

) sin(2(N−1)π
N

) . . . sin( (N−1)2π
N

)


and

Λ =
1

( L
N

)2


(2 sin π

2N
)2

(2 sin 2π
2N

)2

. . .

(2 sin (N−1)π
2N

)2


Here, the diagonal entries of Λ are the eigenvalues of (−∆h). Thus the discrete spectral
fractional Laplacian is given by

(−∆S,h)
α/2 = PΛ

α
2 P−1

where

Λ
α
2 =

1

( L
N

)α


(2 sin π

2N
)α

(2 sin 2π
2N

)α

. . .

(2 sin (N−1)π
2N

)α


From the construction of (−∆S,h)

α/2, it is clear that the computational cost for solving the
linear system (−∆S,h)

α/2x = b is O(N logN) via Fast Discrete Sign Transform.
We therefore take

M = (−∆S,h)
α/2

as the preconditioner for the matrices resulting from various discretizations of the Riesz
operator described in section

known_disc
2.1.1:

• AHO: the Huang-Oberman discretization
HuOb14
[21].

• AsG: the second order shifted Grünwald discretization
TiZhDe15
[39].

• ADWZ: the Duo-van Wyk-Zhang discretization
DuWyZh18
[13].

• AMY: the Minden-Ying discretization
MiYi18
[33].

Example 1: In this example, we solve for u from

Au = f

where u = (1 − x2)s+
α
2 , f =

2αΓ(α+1
2

)Γ(s+1+α
2

)√
πΓ(s+1) 2F1(α+1

2
,−s; 1

2
;x2), s = 3 and A is any of

the matrices listed above. We solve it iteratively with CG or PCG using M = (−∆S,h)
α/2

described above as the preconditioner. The results are summarized in Table
steady_state_iter
1.
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Table 1: Iteration numbers of Example 1: Plain: PCG, preconditioned by M . Parenthesis:
CG, no preconditioners.

steady_state_iter

scheme α N= 32 N= 128 N= 512 N= 2048
HO

HuOb14
[21] 1.1 8(15) 8(40) 8(88) 9(191)

HO
HuOb14
[21] 1.5 7(16) 7(55) 7(163) 8(466)

HO
HuOb14
[21] 1.9 5(16) 5(64) 6(250) 6(942)

sG
TiZhDe15
[39] 1.1 10(13) 11(32) 11(72) 12(157)

sG
TiZhDe15
[39] 1.5 9(16) 10(48) 11(139) 11(398)

sG
TiZhDe15
[39] 1.9 6(16) 7(64) 7(241) 8(900)

DWZ
DuWyZh18
[13] 1.1 6(16) 7(42) 7(93) 7(202)

DWZ
DuWyZh18
[13] 1.5 6(16) 6(58) 7(170) 7(486)

DWZ
DuWyZh18
[13] 1.9 5(16) 5(64) 6(252) 6(950)

MY
MiYi18
[33] 1.1 7(16) 7(43) 8(96) 8(207)

MY
MiYi18
[33] 1.5 7(16) 7(59) 7(173) 8(493)

MY
MiYi18
[33] 1.9 5(16) 5(64) 6(253) 6(953)

Example 2: In this example, we perform similar test on two dimensional case using
example in

MiYi18
[33] on Ω ∈ [0, 1]2. The preconditioner M = (−∆S,h)

α/2 can be easily generalized
to rectangular domains [0, 1]d ⊂ Rd and inverted withO(N logN)d operations. Note that

MiYi18
[33]

is the only structure preserving discretization in multi-dimensional case and our proposed
preconditioner M = (−∆S,h)

α/2 clearly outperforms the preconditioner proposed by the
authors in

MiYi18
[33]. The results are summarized in table

pre_num_ying
2.

4.2 Progress in ongoing MoST Proposal (2020/08/01-2021/07/31),
officially extended to 2022/07/31: Structure Preserving Dis-
cretization with Integrable Singular Convolution Kernel

TW4
In this ongoing MoST project, the PI is conducting research on higher order structure pre-
serving discretization of the fractional Laplacian for (

be3n
10) in multi-dimensions. The first

novelty of our method is to utilize the identity

c(n, α)P.V.

∫
Rn

u(x)− u(y)

|x− y|d+α
dy = C(d, α− 2)∆

∫
u(y)

|x− y|d+α−2
dy, (16) id2

which provides yet another equivalent formulation for (−∆)
α
2 u.

From the numerical point of view, the new equivalent formula, the right hand side of
(
id2
16), possesses significance advantages over the left hand side, the Riesz formula:

(i) On the integral part, the kernel of the right hand side is two orders more regular than
that of the left hand side (and is integrable). Desingularization and higher order
quadrature can be achieved more easily with the new approach described below.
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Table 2: Iteration numbers of Example 2: Plain: PCG, preconditioned by M = (−∆S,h)
α/2.

Bracket: PCG with preconditioner proposed in
MiYi18
[33]. Parenthesis: CG, no preconditioners.

pre_num_ying

α N tol=10−6 tol=10−9

1.25 128 6[21](61) 9[33](77)
1.25 256 7[28](95) 9[43](121)
1.25 512 7[36](148) 10[57](188)
1.25 1024 7[47](231) 10[74](292)

1.5 128 6[15](86) 8[23](108)
1.5 256 6[18](147) 9[28](184)
1.5 512 7[21](250) 9[33](312)
1.5 1024 7[26](425) 10[40](528)

1.75 128 5[11](120) 7[15](149)
1.75 256 5[12](223) 7[17](278)
1.75 512 6[13](413) 8[19](516)
1.75 1024 6[14](766) 8[21](962)

(ii) If u is regular enough, standard higher order discretization can be applied to the
standard Laplacian outside of the integration on the right hand side.

(iii) Both (i) and (ii) can be carried out with structure preserving discretizations, leading
to a Toeplitz-like linear system that can be evaluated and solved with O(N logN)d

operations.

The second key ingredient of our method is a new treatment of mild integrable singularity.
Take the 1D case for example. The right hand side of (

id2
16) gives:

(−∆)
α
2 u(xk) =

1

2 cos(απ
2

)

d2

dx2

∫ b

a

u(s)

|xk − s|α−1
ds

=
1

2 cos(απ
2

)

d2

dx2

∑
j

∫
Ij

u(s)

|xk − s|α−1
ds

where Ij = [xj− 1
2
, xj+ 1

2
].

Instead of using the standard quadrature rule:∫
Ij

u(s)

|xk − s|α−1
ds ≈ wi

u(si)

|xk − si|α−1
|Ij|

which only gives O(h2−α) overall accuracy of integration due to the mild singularity at j ∼ k,
we take the following approach to separate the singularity:

14



We observe that, if u is smooth, we can approximate the integral in each Ij by

u(s) = u(xi) +Dhu(xi)(s− xi) +
D2
hu(xi)

2
(s− xi)2 +O(h3) on Ij (17) q0

and ∫
Ij

uj(s)

(xk − s)α−1
ds ≈ K

(0)
k−ju(xj) +K

(1)
k−jDhu(xj) +K

(2)
k−j

D2
hu(xj)

2
(18) q1

where

K
(i)
k−j =

∫
Ij

(s− xj)i

(xk − s)α−1
ds

Overall, the formula (
q1
18) results in an Toeplitz matrix with 4th order accurate for smooth

solutions.

Figure 1: curv1

To compute the Toeplitz kernel

∫
Ij

(s− xj)i

(xk − s)α−1
ds, it suffices to evaluate it using standard

Gaussian quadrature. Away from the singularities, 3 Gaussian quadrature points in each
direction (9 quadrature points in each 2D cell) is enough to provide machine accuracy.
The number of quadrature points is increased as we approach the singularity. Since the
singular region only constitutes a small portion of the computational domain, the overall

15



Figure 2: gridnum

computational cost only increases by a small fraction compared to the quadrature for smooth
regions. Figure

curv1
1 and Figure

gridnum
2 demonstrate the number of quadrature points needed in

each dimension as a function of distance to the singularity. Average number of quadrature
points per cell is around 3.152 for an N × N simulation with N = 256 (or 10% increase in
computational cost compared to 32 quadrature points per cell on smooth regions). Obviously
the average cost per cell decreases as N in creases.

We have successfully developed a novel structure preserving discretization which is 4th
order accurate for smooth solutions in 1D and 2D. The computational cost for evaluating
the convolution kernel is O(N) in 1D and O(N2) in 2D. where N is the number of partitions
in each direction. With the built-in Toeplitz structure, the evaluation of the convolution
(matrix-vector multiplication) is O(N logN) in 1D and O(N logN)2 in 2D. The 3D code is
currently under development.

4.3 Stability Analysis of for linear Systems
ea

We first rewrite the linear system

ut = −L(u) + f (19)

after spatial discretization, in matrix and vector notations:

ut + C1Mu = (C1M− A)u + f (20) evo3
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Here u and f are vector valued grid functions, in RM−1. Denote by

A : matrix representation of L, C1M : matrix representation of L0

M and A are real (M−1)×(M−1) real matrices. By assumption M = MT > 0,A = AT > 0.
In practice, we can take M to be a preconditioner of A, if available and C1 is a constant to
be determined.

For two real symmetric (M − 1)× (M − 1) matrices P and Q, we write P > Q provided
uTPu > uTQu for all u ∈ RM−1 \ {0}. Similarly for P ≥ Q. We also denote the standard
L2 and weighted inner products and norms in RM−1 for any W = WT ≥ 0 by

〈u,v〉 = uTv, 〈u,v〉W = uTWv, (21)

and
‖u‖2 = 〈u,u〉, ‖u‖2

W = 〈u,u〉W. (22)

4.3.1 Stabilized Backward Euler Scheme
aos1

In the matrix vector notation, the stabilized Backward Euler method (
be1
6) reads

un+1 − un

∆t
+ C1Mun+1 = (C1M− A)un + fn, (23) be2

We will show that (
be2
23) are stable both in energy norm and L2 norm. The argument is

straight forward, see also
XuTa06
[44], for example. We include it here for readers convenience in

reading section
aos2
4.3.2.

thmbe1 Theorem 1. If C1M ≥ 1
2
A, then the stabilized backward Euler scheme (

be2
23) is uncondition-

ally stable and satisfies

‖uN‖2
A ≤ ‖u0‖2

A +
∆t

2

N−1∑
n=1

‖fn‖2 (24) aest1

and

‖uN‖2 + ∆t‖uN‖2
C1M−A

2

≤ ‖u0‖2 + ∆t‖u0‖2
C1M−A

2

+
∆t

2

N−1∑
n=0

‖fn‖2
A−1 (25) l2est1

Proof.

Q ≡
(

1

∆t
+ C1M

)
. (26) defQ

and rewrite (
be2
23)

Q(un+1 − un) + Aun = fn (27) BE3

Take 〈un+1−un, •〉 on both sides of (
BE3
27), and write Aun = 1

2
A(un+1 +un)− 1

2
A(un+1−un),

we have

‖un+1 − un‖2
Q −

1

2
‖un+1 − un‖2

A +
1

2

(
‖un+1‖2

A − ‖un‖2
A
)

= 〈un+1 − un,fn〉 (28)

17



or

‖un+1 − un‖2
Q−A

2

+
1

2

(
‖un+1‖2

A − ‖un‖2
A
)

= 〈un+1 − un,fn〉 (29) qmha11

From (
defQ
26), we have

‖ · ‖2
Q−A

2

=
1

∆t
‖ · ‖2 + ‖ · ‖2

C1M−A
2

(30) qmha2

From (
qmha2
30), we have

1

∆t
‖un+1−un‖2 +‖un+1−un‖2

C1M−A
2

+
1

2

(
‖un+1‖2

A − ‖un‖2
A
)
≤ 1

∆t
‖un+1−un‖2 +

∆t

4
‖fn‖2

(31)
By assumption, C1M− A

2
≥ 0, therefore

1

2

(
‖un+1‖2

A − ‖un‖2
A
)
≤ ∆t

4
‖fn‖2 (32)

which leads to (
aest1
24) after summing over n.

The energy norm estimate (
aest1
24) along is sufficient to assert unconditional stability of (

be2
23).

For sake of completeness, we proceed with the L2 estimate (
l2est1
25). Take the standard inner

product with un+1 + un on both sides of (
BE3
27) to get

‖un+1‖2
Q − ‖un‖2

Q +
1

2
‖un+1 + un‖2

A −
1

2

(
‖un+1‖2

A − ‖un+1‖2
A

)
= 〈un+1 + un,fn〉 (33) qmha0

it follows that

‖un+1‖2
Q−A

2

− ‖un‖2
Q−A

2

+
1

2
‖un+1 + un‖2

A ≤
1

2
‖un+1 + un‖2

A +
1

2
‖fn‖2

A−1 (34) qmha1

From (
qmha1
34) and (

qmha2
30), we have(

‖un+1‖2 + ∆t‖un+1‖2
C1M−A

2

)
−
(
‖un‖2 + ∆t‖un‖2

C1M−A
2

)
≤ ∆t

2
‖fn‖2

A−1 (35)

which leads directly to (
l2est1
25) upon summing over n. This completes the proof of (

l2est1
25)

4.3.2 Stabilized Predictor-Corrector Scheme
aos2

In this section, we will give a rigorous stability estimate of the stabilized predictor-corrector
scheme: 

un+ 1
2 − un

∆t
2

+ C2Mun+ 1
2 = (C2M− A)un + fn

un+1 − un

∆t
+ C2M

un+1 + un

2
= (C2M− A)un+ 1

2 + fn+ 1
2

(36) OSRK2

where M and A are as in section
aos1
4.3.1. Here C2M is the matrix representation of the

stabilizing term L0 and C2 is another undetermined constant.
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The discrete energy estimate for the stabilized Backward Euler method (
be2
23) in section

aos1
4.3.1 can probably be extended to higher order schemes including CN-AB2 as in

ShWaWaWi12
[37] and

BD2/EP2, BD3/EP3 as in
XuTa06
[44]. See also

Li13
[29] for energy estimate of up to BDF5 scheme

for Stokes equations. The authors in
ShXu18b
[38] took a different approach and obtained L2 error

estimate of (
rk2
13) applied to the isotropic Cahn-Hilliard equation.

Our goal is to establish similar estimates as in Theorem
thmbe1
1 for the second order scheme

(
OSRK2
36). To this end, we first eliminate the intermediate variable un+ 1

2 by rewriting the first
equation of (

OSRK2
36) as ( 2

∆t
+ C2M

)
un+ 1

2 =
( 2

∆t
+ C2M− A

)
un + fn (37)

and substitute it back to get( 1

∆t
+
C2M

2

)
un+1 =

( 1

∆t
+
C2M

2
− A− (C2M− A)

( 2

∆t
+ C2M

)−1A
)
un

+ (C2M− A)
( 2

∆t
+ C2M

)−1
fn + fn+ 1

2

(38) evol1

To simplify the expression, we denote by

Q2 ≡
( 2

∆t
+ C2M

)
= QT

2 > 0, (39) deftQ

T ≡ (C2M− A) = TT > 0, (40) defT

and rewrite (
evol1
38) as

1
2
Q2u

n+1 =
(

1
2
Q2 − A− TQ−1

2 A
)
un + TQ−1

2 fn + fn+ 1
2

=
(

1
2
Q2 −

(
I + TQ−1

2

)
A
)
un + TQ−1

2 fn + fn+ 1
2

=
(

1
2
Q2 −

(
Q2 + T

)
Q−1

2 A
)
un + TQ−1

2 fn + fn+ 1
2

(41)

or

un+1 = (I−2Q−1
2

(
Q2 +T

)
Q−1

2 A)un+2Q−1
2 TQ−1

2 fn+2Q−1
2 fn+ 1

2 = (I−S−1A)un+gn (42) 2ndeq1

where

S ≡ 1

2
Q2(Q2 + T)−1Q2 (43) defS

and
gn ≡ 2Q−1

2 TQ−1
2 fn + 2Q−1

2 fn+ 1
2 . (44) defg

It is crucial to note that
S = ST > 0, (45) sst

therefore (
OSRK2
36) can be symmetrized and put in a form that completely resembles the 1st order

scheme (
BE3
27):

S(un+1 − un) + Aun = Sgn (46) 2ndeq2

Upon comparing (
BE3
27) with (

2ndeq1
42), and inspecting the left hand side of (

qmha11
29) and (

qmha1
34), it is

clear that the following estimates are crucial for the estimates of the 2nd order scheme (
2ndeq2
46):
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lemma1 Lemma 1. If A = AT > 0, M = MT > 0 and C2M ≥ A, then

(i)
A
2

+
1

∆t
≤ S (47) SmhA

(ii)
Q2

4
≤ S ≤ Q2

2
. (48) mSeqtmQ

where S, Q2 are defined by (
defS
43), (

deftQ
39) and (

defT
40).

Proof. Part (i): Denote by B = A +
2

∆t
, and λmax, µmax the maximal eigenvalue of

Bv = λQ2v, and Bv = µSv, (49) eig1

respectively, where Q2 is given by (
defQ
26). We will show that

A ≤ C2M =⇒ λmax ≤ 1 =⇒ µmax ≤ 2 (50) eig2

The first implication is obvious since λmax ≤ 1 if and only if B ≤ Q2. As to the second
implication, we first note that the pencils in (

eig1
49) are isospectral to

B
1
2Q−1B

1
2w = λw and B

1
2S−1B

1
2w = µw, (51) eig3

respectively (where w = B 1
2v). Therefore

µmax ≤ max
x∈RM−1\{0}

2
xTB 1

2S−1B 1
2x

xTx

= max
x∈RM−1\{0}

2
xTB 1

2Q2
−1(2Q2 − B)Q2

−1B 1
2x

xTx
(since Q2 + T = 2Q2 − B)

= max
x∈RM−1\{0}

2
xT
(
B 1

2Q2
−1B 1

2

)(
B− 1

2 (2Q2 − B)B− 1
2

)(
B 1

2Q2
−1B 1

2

)
x

xTx

= max
x∈RM−1\{0}

2
xTB̂(2B̂−1 − 1)B̂x

xTx
, where B̂ ≡ B

1
2Q2

−1B
1
2

(52) eig4

From (
eig3
51) and the definition of B̂, we see that

µmax ≤ 2 max
j
λj

(
2

1

λj
− 1
)
λj = max

j

(
4λj − 2λ2

j

)
= max

j
2
(

1−
(
1− λj

)2
)

(53) tmp7

Since λj ≤ λmax ≤ 1, it follows that µmax ≤ 2. This completes the proof of (
eig2
50), hence (

SmhA
47).
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Part (ii): Since

S =
1

2
Q2(Q2 + T)−1Q2 = Q2(

4

∆t
+ 4C2M− 2A)−1Q2 (54) qs1

Therefore, since C2M > A,

4

∆t
+ 4C2M− 2A ≥ 4

∆t
+ 2C2M = 2Q2. (55) qs2

On the other hand
4

∆t
+ 4C2M− 2A ≤ 4

∆t
+ 4C2M ≤ 4Q2 (56) qs3

thus (
mSeqtmQ
48) follows from (

qs1
54), (

qs2
55), and (

qs3
56).

ThmAi2nd Theorem 2. Under the same assumptions in Lemma
lemma1
1, the stabilized predictor-corrector

scheme (
OSRK2
36) (or (

2ndeq2
46)) is unconditionally stable and admits the following estimates:

‖uN‖2
A ≤ ‖u0‖2

A + ∆t
N−1∑
n=0

(
‖fn‖2 + ‖fn+ 1

2‖2
)

(57) Anormbound

and

‖uN‖2 ≤ ‖u0‖2 +
∆t

2
C2‖u0‖2

M + ∆t
N−1∑
n=0

(
‖fn‖2

A−1 + ‖fn+ 1
2‖2

A−1

)
(58) l2bound

Proof. Proof of (
Anormbound
57):

Similar to the derivation of (
qmha11
29), we can obtain the following estimate from (

2ndeq2
46):

‖un+1 − un‖2
S−A

2

+
1

2
(‖un+1‖2

A − ‖un‖2
A) = 〈un+1 − un,Sgn〉 (59)

With (
SmhA
47) and the inequality

〈un+1 − un,Sgn〉 ≤ 1

∆t
‖un+1 − un‖2 +

∆t

4
‖Sgn‖2, (60)

we see that
1

2
(‖un+1‖2

A − ‖un‖2
A) ≤ ∆t

4
‖Sgn‖2. (61) ThmAnorm2ndeq1

To estimate the right hand side of (
ThmAnorm2ndeq1
61), we note from (

defg
44) that

‖Sgn‖2 ≤ 2‖2SQ−1
2 TQ−1

2 fn‖2 + 2‖2SQ−1
2 fn+ 1

2‖2 (62)

It suffices to estimate Q−1
2 TQ−1

2 S2Q−1
2 TQ−1

2 and Q−1
2 S2Q−1

2 .

Since S ≤ Q2

2
, and T = C2M− A ≤ Q2, we have

Q−1
2 TQ−1

2 S2Q−1
2 TQ−1

2 ≤
1

4
Q−1

2 T2Q−1
2 ≤

1

4
I (63)
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and

Q−1
2 S2Q−1

2 ≤
1

4
I (64)

thus
‖Sgn‖2 ≤ 2‖fn‖2 + 2‖fn+ 1

2‖2. (65) gsnorm

From (
ThmAnorm2ndeq1
61) (

gsnorm
65), we obtain

‖un+1‖2
A ≤ ‖un‖2

A + ∆t
(
‖fn‖2 + ‖fn+ 1

2‖2
)

(66)

which completes the proof of (
Anormbound
57) after summing over n.

The energy norm estimate (
Anormbound
57) along is sufficient for unconditional stability of (

OSRK2
36). We

proceed with the L2 estimate (
l2bound
58) for sake of completeness.

Proof of (
l2bound
58):

Recall the derivation that leads to (
qmha1
34) and apply it to (

2ndeq2
46), we get the analogue of (

qmha1
34)

for (
2ndeq2
46):

‖un+1‖2
S−A

2

− ‖un‖2
S−A

2

≤ 1

2
‖Sgn‖2

A−1 (67) smha1

It remains to estimate ‖Sgn‖2
A−1 . From (

defg
44), we have

Sgn = Q2(Q2 + T)−1Q2(Q−1
2 TQ−1

2 fn + Q−1
2 fn+ 1

2 )

= (Q−1
2 + Q−1

2 TQ−1
2 )−1(Q−1

2 TQ−1
2 fn + Q−1

2 fn+ 1
2 )

(68)

Consequently,

‖Sgn‖2
A−1 ≤ 2‖(Q−1

2 + Q−1
2 TQ−1

2 )−1Q−1
2 TQ−1

2 fn‖2
A−1

+ 2‖(Q−1
2 + Q−1

2 TQ−1
2 )−1Q−1

2 fn+ 1
2‖2

A−1

(69) Sg1

The first term on the right hand side of (
Sg1
69) can be estimated by

‖(Q−1
2 + Q−1

2 TQ−1
2 )−1Q−1

2 TQ−1
2 fn‖2

A−1

=‖A−
1
2 (Q−1

2 + Q−1
2 TQ−1

2 )−1Q−1
2 TQ−1

2 fn‖2

=‖(A
1
2Q−1

2 A
1
2 + A

1
2Q−1

2 TQ−1
2 A

1
2 )−1(A

1
2Q−1

2 TQ−1
2 A

1
2 )A−

1
2fn‖2

≤‖A−
1
2fn‖2 = ‖fn‖2

A−1

(70)

where we have used the fact that if P = PT > 0, Q = QT > 0, then P(P+Q)−2P < P(P)−2P =
I. Similarly, the second term is bounded by

‖(Q−1
2 + Q−1

2 TQ−1
2 )−1Q−1

2 fn+ 1
2‖2

A−1 ≤ ‖fn+ 1
2‖2

A−1 (71)

thus
‖Sgn‖2

A−1 ≤ 2‖fn‖2
A−1 + 2‖fn+ 1

2‖2
A−1 . (72) ThmAi2ndeq3
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After summing (
smha1
67) over n and applying the estimate (

ThmAi2ndeq3
72), we get

‖uN‖2
S−A

2

≤ ‖u0‖2
S−A

2

+
N−1∑
n=0

(
‖fn‖2

A−1 + ‖fn+ 1
2‖2

A−1

)
(73)

From (
SmhA
47) and (

mSeqtmQ
48) and (

ThmAi2ndeq3
72), we have

1

∆t
‖uN‖2 ≤ 1

2

(
C2‖u0‖2

M +
2

∆t
‖u0‖2

)
+

N−1∑
n=0

(
‖fn‖2

A−1 + ‖fn+ 1
2‖2

A−1

)
(74) ThmAi2ndeq4

Thus (
l2bound
58) follows from multiplying (

ThmAi2ndeq4
74) by ∆t.
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