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1 Introduction

During the past few decades, scientists have been exploring fractional calculus as a tool for
developing more SO@Q}%@%R?& gl%e%eiqlﬁtigéawnodels that can accurately describe complex
anomalous systems [306, 8, 32, 41]. Among different fractional operators, the fractional Lapla-
cian has been intensively studied in the recent literature. It corresponds to one of the most
important cases where the jump direction in the Lévy process is isotropic. The fractional
Laplacian has been used in place of the integer-order Lapl ai in many applications, in-
%ﬁ%&g, for exarpple, Frac?ioqﬁggggf&gnﬁ&@g&g&eqn%ions E’%;{%Quasi—geostrophic equat?on
E;%qrcgﬁ% g&?dlum equation [4, 35] The Schrodinger equation and Ultrasound equation

140, 10]
In this MoST project, we will focus on the fractional-in-space Allen-Cahn equations

(FiSAC):

ur+ Lu+ f(u) =0 in Q (1)
u=0 on 0

: . . . .. fisac
and aim to develop robust and efficient time discretization for (here
1
f(u) — S -y = F’(u>7 where F(u) - Z(U2 _ 1)2

a/2 . . . . . . def
and £ = €*(—A)R~ is the Riesz fractional Laplacian with 1 < a < 2 (see section 15 for
definitions of various %fgatcional Laplacians). Compared to standard Allen-Cahn equations,
the fractional model () replaces the standard Laplacian by fractional derivative.

In recent years, there has been significant interest in using the diffusive-interface phase
field approach for modeling the mesoscale morphological pattern formation and interface
motion. One of the very effective mathematical mo ésa_gescribing these physical phenom-
ena is the Hseg%fCahn equation introduced in 1979 [I]. Roughly speaking, the Allen-Cahn

equations escribes regions with v ~ 1 and u ~ .Egcgrow and decay at the expense of one
another [I]. It is noted that the FiSAC eguation (I ; has attracted many attentions in recent
years. For ex uprs)alxﬁh 1];’iulrlrauge et al. ' proposed an implicit fi g%agllgfgent scheme, Bueno—
Orovio et al. [6] considered the Fourier spectral methods. In , the authors considered

the Crank-Nicolson time discretization in 1D.




1.1 Definitions of fractional Laplacian in R? and bounded domains
def
The fractional Laplacian in R? can be defined in many equivalent ways. For example,

1. Fractional Laplacian in RY using Fourier representation
F((=Au))(€) = [€]*F(u).
2. Fractional Laplacian in R? using integral representation

A - e py [ H@ =)
(=8P ufa) =~ PV [ Sy

where "
2°D (5%

Ca,d = /2 ‘F(—%)}

A more comprehensive review of a, j,ous definitions of the fractional Laplacian in R¢ and
their equivalence can be found in FZ%‘

However, when these definitions are restricted to bounded domains, the associated bound-
ary conditions lead to distinct operators. Some of the mostly well known definitions include:

1. The Integral (Dirichlet) fractional Laplacian on 2. The fractional Laplacian
of u(z), r € Q is defined through first extending u(z) to a function in R%

_ u(z), x€Q
a(z) = { 0, x € Q°

and then the usual fractional Laplacian definition is used
(=A)u(x) = (~A)i(a)
where the right hand side is defined through Fourier transform and its inverse

(=)0 == FH (¢ Fa)

2. The Spectral fractional Laplacian on ().
The fractional operator is obtained via a spectral definition, that is
(—A)g/2u(x) = Zui/\?ﬂgpi(x) (2) |SLaj
ieN
where ;, \; > 0 are eigenfunctions and eigenvalues of the standard Laplacian in €2
with homogeneous Dirichlet boundary data,

—Ap; = A, in Q
w; =0, on 0f)

2



3. The Regional (Riesz) fractional Laplacian on €.

This definition is carried out through restricting the integration domain to €.

e oy [ M) = u)
(8 ule) = o PV [ HE Wy

where

ZO‘F( @)

Ca,d =
< T(-3)]

Further results on sto iaset%caf'%erpretation and analytic properties of these fractional Lapla-
cians can be found in ;{

In this MoST proposal, we consider fractional Laplacian on a bounded domain Q Cc R?
with zero Dirichlet boundary conditions (i.e. uw = 0 on 012). Both the Fourier and integral
representation above can be naturally extended to bounded domains by extending v = 0
on R\ Q (and remain equivalent). In practice, the integral representation version is more
convenient for numerical purpose on bounded domains and is the most widely used in the
literature.

2 Project Description

"
The fractional Allen—Cahn equation (I ;Sgacm be viewed an L2-gradient flow of the following
fractional analogue version of Ginzburg— Landau free energy functional

1
E(u) = / F(u) + §u£u (3) |GLfe
Q

Similar to standard Allen-Cahn equations, the fractional model satisfies the energy decreasing
property:

d

€)= —[lu* <0 (4)
With regarding to this nonlinear energy stability, many numerical WOIZ"LkE }é%ve been glevi)o 6. a0,

to the solutions of the (standard) Allen-Cahn equation, see, e.g., [11 14 15, lb 17,719,
20, 46, 47]. In the past few years, the numerical stability has been mostly restricted to
this energy decreasing propert S;I;ghis is in particular becoming popular due to the convex
concave splitting idea of Eyre , which turns out to be very effective for gradient flows
but ends up with a nonlinear time stepping scheme.

To over come the difficulties associated with the nonlinear time stepping scheme, a con-
ventional wisdom is to perform a suitable operator splitting

L(u) = Lo(u) + (L(u) — Lo(u)) (5)

and treat Lo(u) and L(u) + f(u) — Lo(u) separately. Typically, £y is a dominant linear
operator. To stabilize the time stepping, Lo(u) is discretized implicitly, while £(u) + f(u) —
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Lo(u) is discretized explicitly. so that the time marching is stable with fast direct solvers for
the resulting linear system:

u =" n+1 n n n
T L) = Lo(u") = L") = f(u"), (6)
For example, for standard Allen-Cahn equations, one could take Lou = —e?Au + Su with

S > 0 large enough to stabilize the nonlinear term f(u). This results to the following linear

system:
n+1 n

u —Uu

N + Lo(u"h) = Lo(u") — L(u") — f(u"), (7)
The resulting linear system
1
(Kt—ézA—{-S) n+1:gn (8)

can be solved efficiently with FFT. fisac
The situation is slightly different for the fractional model () if we take

Lou = e(—A)2%u + Su, (9)

as the corresponding linear system

1 o n n
(7 + AR+ 5 =g (10)

does not have a fast direct solver. Either an efficient preconditioner for the fractional operator
C 4 (=A%, or further splitting of the term €2(—A)%/? is required:

Lou = €CMu + Su, (11)

where M in (Eﬁ% can be taken as a preconditjoner, if available. The splitting (b%results in a
preconditioned iterative scheme and the (%’% results in a direct scheme provided a suitable
splitting M is found. In previous MoST project, we found that the spectral fractional Lapla-
clan M = (—A)g/ 2 can be solved by FET 1andss ves as an eX%_gglely ggiidprecogditioner
and can be applied in both approaches (bx).)’or (ITT). See section and 4. T for details.
There have been several generalization of the stabilization to higher order schemes. A
well known 2nd order time discretization combines Crank-Nicolson method for L£y(u) together

with 2nd order Adam-Bashforth for £(u) — Lo(u) to get (CN-AB2)
utl — un—i—l + " 3 N N " 1 . o -
— tLo(———) = 5 (Lo(w") = L(u" = f(u"))) — 5 (Lo ") = L{u" " = f(u"1)))
At 2 2 2
(12)
In this MoST proposal, we consider an alternatiy. %%blhzed semi-implicit second order
scheme (also known as predictor-corrector scheme %g ):

un+% —u" n+i n n

T+£O(u 2) = (Lo — L)(u") — f(u") (13)
n+12_ n n+1 n 1 )

e L) = (Lo — L)) — ()

At 2
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Due to the presence of intermediate step w2 in the scheme (PI%%, sharp stability estimate
is difficult to obtain in general. It is well believed that the system is stabilized as long as the
stabilizing term Ly is large enough. On the other hand, we have observed that the overall
absolute error also increases with L.

For gepgral (possibly nonlinear or nonlgcal) elliptic operator Lu+ f(u), the second order
scheme (T3].is a natural generalization of (%)’ and retains all the numerical advantages. Both
steps in (E‘ifi) are uniquely solvable with fast s 11¥ rs provided Ly is a suitable chosen constant
co 1131% elliptic operator. The stability of %3% is not cle rrk' general. Numerical evidence
in %é (and rigorous proof in some cases) suggests that 2[3%“ is more robust and accurate
for gradient flows with Styong anisotropic free energy. We believe this is due to lack of
extrapolation steps in (I3). In a preliminary analysis, we start with the the simplest case
where L is linear nonnegative self-adjoi L f =0 and found a precise sufficient con%gcion on
the stabilizing term L, for the scheme (II3) to be unconditional stable (see section 3). We
believe this is a strong indication for nonlinear stability of the stabilized scheme (II3) and
will also pursue in this direction for the current MoST proposal.

2.1 Potential difficulties and proposed method of resolution

In contrast to clagsical integer order PDEs, the main difficulty associated with numerical
computations of (IU; is that these operators are non-local, hyper-singular integral operators.
To solve (IU% accurately and efficiently, the central issues include:

b
(a) Accurate discretization of (lellif1

(b) Fg%nevaluation of matrix-vector multiplication corresponding to the discretization of

(

(c) Efficient preconditioning technique for the linear system resulting from (a), (b).

We will elaborate them in the following subsections. To simplify the presentation, we will
mainly explain these issues in the 1D setting (that is d = 1, Q = [a, b]) and comment briefly
in the multi-dimensional case.

2.1.1 Accurate Structure Preserving Discretizations

Since é@%s a nonlocal operator, standard numerical discretization of the fractional Lapla-
cian (I0) inevitably leads to a dense matrix. This poses a main difficulty in all iterative
solvers %@ matrix-vector multiplication is extremely expensive. Moreover, since the inte-
gral in (II0) is hyper-singular, a proper regularization procedure is required to evaluate the
integral accurately.

On the other hand, the fractional Laplace operator is translation-invariant. If the transla-
tion invariant property can be preserved numerically at the discrete level, the corresponding
discrete fractional %,e lace operator gives rise to a Toeplitz matrix, thus the matrix-vector
multiplication in (&O%gcan be performed efficiently by FFT with O(N log N) complexity.



eon
The discrete translation-invariant property of (IU; (and hence the Toeplitz structure) is
possible only on uniform grids. We will thus restrict our discussion in this class of discretiza-
tions. Here we list a few known discretizations along this line:

1. One of the most widely adopted structure preserving spatial discretization is based on
the identity

b
. 02 L0
py [ MM, o) + i) 1 o
o T =yt 2 cos(am/2)
for smooth enough u, and the the Griinwald Letnikov formula (the Griinwald approx-
imation) for the left Riemann-Liouville fractional derivative _,,0% (with the under-
standing that v = 0 on = < a):
1 & o
Glya — i _ _ 1)k —
a05u() = lim e > (-1 < k) u(x — kh) (15) [1GL

k=0

where N is the number of partition and h = (z T )/N. A stable rj l}ta—osilifted approxi-
mation of the the Griinwald Letnikov formula (h’% is proposed in %H which leads to a

Toeplitz matrix with O(h) discretization error for the left Riemann-Liouville fractional

derivative ) )
9 9% 0 -0
X g9 9¢ 9 - 0
a_ bt : . ) ) .
ha . . .
IN—2 - e g0
[9N—1 IN—2 - 97
where g = 1,
« —<Oé —k + 1) o
9k = Tgk—l

and h = (b —a)/N. A similar formula for ,0% u(x) leads to the matrix representation
for the right Riemann-Liouville fractional derivative GT.

iZhDe15
The Griinwald approximation is later improved to second order accurate in %QZ'}h_bT
way of a weighted and shifted combination of the first order Griinwald approximation,
retaining the Toeplitz structure. In addition to the Riesz fractional Laplacian, this
discretization can be generalized to variable coefficient Riemann-Liouville fractional
PDEs, the fractional diffusion operator can thus be represented by a linear combination
of diagonal-times-Toeplitz matrices, and therefore the matrix-vector multiplication can
be performed efficiently by FFT with O(N log V) complexity. As a consequence, almost
all the earlier works in 1D adopt these Griinwald discretizations. However, it is not
clear how to generalize the Griinwald approximation to the multi-dimensional fractional
Laplacian.

2. More recent structure preserving di cr Itlizad:i y fl‘glhe fractional Laplacian are mostly
based on the Riesz representation ( U% In ( , Huang and Oberman proposed to
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discretize the operator by dividing the integral in to singular and regular parts. For
the singular part, the authors use Taylor expansion and finite difference approximation
for |y| < h. For the regular part |y| > h, they approximate the integran Ry stan-
dard polynomial interpolant. This results an 2nd order approximation of (I0) with a
Toeplitz matrix.

ullyZh18
3. In PE[B']‘LDW), van Wyk and Zhang discretized the Riesz fractional Laplacian by intro-
ducing a splitting parameter and formulate the fractional Laplacian as the weighted
integral, then approximated it by weighted trapezoidal rule. The results is also 2nd
order accurate a and leads to a Toeplitz matrix.

iYils8
4. In %Winden and Ying discretized the fractional Laplacian by subtracting a poly-
nomial times a cut off function to remove the singular part, then using trapezoidal
rule for the smooth part and finite difference approximation of the derivative for the
remaining part. The results is also 2nd order accurate a and leads to a Toeplitz ma-
trix and applies to multi-dimensional case. So far, this scheme appears to be the only
structure preserving discretization in multi-dimension.

5. In previous MoST project, we have develop a novel spatigl discretization that can be
upgraded to 4th order in space very easily. See section &.2 for details

2.1.2 Efficient Preconditioners for solving the Toeplitz-like matrices

In the constant coefficient case, the 1D fractional diffusion equation results in exact Toeplitz
matrices (with Backward Euler or higher order implicit time (ljlis&getization). The fast itera-
tive solver for Toeplitz matrices is very well developed, see }féﬁ_%oT a thorough review.

For the variable coefficient case, the resulting matrices are combinations of diagonal-

times-Toeplitz matrices. Most existing preconditioners fall into two categories:
, o _ [LeSul3, PaKeNgSul4, LiNgSul7
e Circulant preconditioners as in [25, 34, 20].

. . . [WaWaSil0O, WaWall, JiLiZh15, LiYaJil4, ZhJiLil6
e Banded matrix preconditioners as in [[42, 43, 22, 28, 48].

In previous MoST project (2019/08/01-2029/07/31), we proposed a novel preconditioner
based on the spectral fractional La lg Iilan (2). Note that the spectral fractional Laplacian
and the Riesz fractional Laplacian %’D%’are genuinely different operators. Nevertheless, nu-
merical evidence shows that they are spectrally equivalent. Moreover, the spectral fractional
Laplacian be easily inverted using Fast Discrete Sine Transform and serves as a perfect can-
didate of the preconditio EEolfgth in 1D and multi-dimensional cases. The results so far are
summarized in Appendix h [

3 Conclusion

The fractional order PDE is a fast growing research subject on many aspects including theory;,
numeric and applications. Unlike classical PDEs, the fractional PDE can describe a wider
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range of phenomenon which are important in many branches of science and engineering. In
this MoST propos l,sgvce expect to be able to develop fast efficient numerical schemes for the
fractional model (%d conduct rigorous error analysis. Graduate students and postdocs
will definitely benefit significantly from participating this project.
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4 Appendix

4.1 Result of the previous MoST project (2019/08/01-2021/01/31)

, In this section, we report our progress of the MoST project on efficient ) enconditioner for
the structure preserving discretization of the Riesz fractional Laplacian (PI%%’

The novelty of our approach is to use the spectral fractiona’ %Oa‘ngladcljggl as the precondi-
tioning operator for various discretizations described in section 2.1.1.

More precisely, consider the standard discrete Laplacian

1 . . . -1
_Ah:ﬁ S = PAP
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where

sin( %) sin(37) . Sin(%)
. T . T . N-1)m
P sin(37) sin(4F) . sm(%)
sin( (N;)W) sin (2 _Um) sin (4 )QW)
and
(2sin 5)?
A 1 (2sin 2%)?

(%)
(2sin %)2

Here, the diagonal entries of A are the eigenvalues of (—=Ap). Thus the discrete spectral
fractional Laplacian is given by

(—Asp)¥? = PAZ P!

where '
(2sin 75)
1 (2sin 2% )@

%)

[N]1)

A

. N-1)7m\a
(2sin %)

From the construction of (—Asyh)o‘/ 2 it is clear that the computational cost for solving the
linear system (—Ag )%z = b is O(Nlog N) via Fast Discrete Sign Transform.
We therefore take
M = (—Ag )2

as the preconditioner for the Irlré%Itlri(fieg,c resulting from various discretizations of the Riesz

k:
operator described in section b E

o Apo: the Huang-Oberman discretization H%%t&

e A.s: the second order shifted Griinwald discretization %QZ']M
e Apwyz: the Duo-van Wyk-Zhang discretization %1%1_}1&18

o Ayy: the Minden-Ying discretization FB%{}@

Example 1: In this example, we solve for u from

Au=f
« ap(atl s <3 .
where u = (1 — 22)**5, f = 2 F(ﬁgé(_i_i_)l+2)2Fl(aTH,_s;%;3:2), s = 3 and A is any of

the matrices listed above. We solve it iteratively with CG or PCG using Msﬁa&?%@ &&)a/ 2

e_iter

described above as the preconditioner. The results are summarized in Table [T,

12



Table 1: Iteration numbers of Example 1: Plain: PCG, preconditioned by M. Parenthesis:
CG@G, no preconditioners.

scheme | o | N=32 | N=128 | N=512 | N= 2048
HORI [ 1.1 | 8(15) | 8(40) 8(88) 9(191)
HORI [ 15| 7(16) | 7(55) | 7(163) | 8(466)
HO2I] 11.9 ] 5(16) | 5(64) | 6(250) [ 6(942)
sGE, .11 ] 10(13) [ 11(32) | 11(72) | 12(157)
sG[39] 1,15 | 9(16) | 10(48) [ 11(139) | 11(398)
steady_state_iter| sG[Jg‘ “1,,9 6(16) | 7(64) | 7(241) | 8(900)
DWZI3IT 11| 6(16) | 7(42) | 7(93) | 7(202)
DWZI3] 115 | 6(16) | 6(58) | 7(170) | 7(486)
DWZI3] 719 | 5(16) | 5(64) | 6(252) | 6(950)
MY[33,LL1] 7(16) | 7(43) | 8(9) | 8(207)
MY[33L, k15| 7(16) | 7(59) | 7(173) | 8(493)
MYT337 T 1.9 | 5(16) | 5(64) | 6(253) | 6(953)

Twé

Examp 1Y2i8 In this example, we perform similar test on two dimensional case using
example in ?:3 0

to rectangular domains [0, 1]¢ € R? and inverted with O(N log N)? operations. Note that

is the only structure preserving discretization in multi-dimensional case and our proposed

preconditi,E;igies{lr1 1%/ (—Ag h)"‘/ 2 clearly outperformE the uJ‘[grecondltloner proposed by the

authors in he results are summarized in table

4.2 Progress in ongoing MoST Proposal (2020/08/01-2021/07/31),
officially extended to 2022/07/31: Structure Preserving Dis-
cretization with Integrable Singular Convolution Kernel

In this ongoing MoST project, the PI is conducting res%h on higher order structure pre-

serving discretization of the fractional Laplacian for (I0) in multi-dimensions. The first
novelty of our method is to utilize the identity

c(n,a)P.V. /Rn %dy =C(d,a —2)A / %dy, (16)

which provides yet another equivalent formulation for (—A)2u.
;g7 Tom the numerical point of view, the new equivalent formula, the right hand side of
(T6), possesses significance advantages over the left hand side, the Riesz formula:

(i) On the integral part, the kernel of the right hand side is two orders more regular than
that of the left hand side (and is integrable). Desingularization and higher order
quadrature can be achieved more easily with the new approach described below.

13
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Table 2: Iteration numbers of Example 2: Plain; ];’
Bracket: PCG with preconditioner proposed in

Cg, preconditioned by M = (—Ag ;)2

iyil
%33 . Parenthesis: CG, no preconditioners.

o N | tol=107% | tol=107"
1.25 | 128 | 6[21)(61) 9[33](77)
1.25 | 256 | 7[28](95) | 9[43](121)
1.25 | 512 | 7[36](148) | 10[57](188)
1.25 | 1024 | 7[47](231) | 10[74](292)
1.5 | 128 | 6[15](86) | 8[23](108)

pre_num_ying 1.5 | 256 | 6[18](147) | 9[28](184)

1.5 | 512 | 7[21)(250) | 9[33](312)
1.5 | 1024 | 7[26](425) | 10[40](528)
1.75 | 128 | 5[11](120) | 7[15](149)
1.75 | 256 | 5[12](223) | 7[17](278)
1.75 | 512 | 6[13](413) | 8[19](516)
1.75 | 1024 | 6[14](766) | 8]21](962)

(ii) If u is regular enough, standard higher order discretization can be applied to the
standard Laplacian outside of the integration on the right hand side.

(iii) Both (i) and (ii) can be carried out with structure preserving discretizations, leading
to a Toeplitz-like linear system that can be evaluated and solved with O(N log N)?

operations.

The second key ingredient of our method is a new treatient of mild integrable singularity.

Take the 1D case for example. The right hand side of (1

r

(=A) 2 u()

where [; = [:L‘j_%,xj+%].

1 d?
 2cos(%) da?

gives:

u(s)

——d
‘xk _ S|a—1 §

1 d? / u(s)
= ——————ds
2 cos(G) da? ZJ: 1, |lon — s[>t

Instead of using the standard quadrature rule:

/ &a_lds SRS
1, |zk — 8| |

u(s;)
_ Sila_l

|15

which only gives O(h?~®) overall accuracy of integration due to the mild singularity at j ~ k,
we take the following approach to separate the singularity:

14



We observe that, if u is smooth, we can approximate the integral in each I; by

u(s) = u(z;) + Dpu(x;) (s — ;) +

and

J

J

where

u;(s)
(z1, — 8)*~

K

—J

:/I.

~ds ~ K,go_)ju(xj) + K

J

1 2
( )thU(l'j) + K]g_)j

Diu(x;)
2

(s —ay)’ .
(xp — s)a*1d

(s — ;) + O(R®) on I

Dju(z;)
2

(17)

(18)

1
Overall, the formula (E’S) results in an Toeplitz matrix with 4th order accurate for smooth

solutions.

0.1
0.09
0.08
0.07
0.06
0.05
0.04

0.03

002

001

Figure 1:

To compute the Toeplitz kernel /
I

50

(s — ;)
(z1 — 5)*~

curs

-ds, it suffices to evaluate it using standard

Gaussian quadrature. Away from the singularities, 3 Gaussian quadrature points in each
direction (9 quadrature points in each 2D cell) is enough to provide machine accuracy.
The number of quadrature points is increased as we approach the singularity. Since the
singular region only constitutes a small portion of the computational domain, the overall

15



Figure 2:

Numbers of quadrature points pre dimension

3 LT o : : &
0 50 100 150 200 250 300

Il

computational cost, lgfqu increase§ 1bXm a small fraction compared to the quadrature for smooth
regions. Figure thd Figure E_CIW)nstrate the number of quadrature points needed in
each dimension as a function of distance to the singularity. Average number of quadrature
points per cell is around 3.15? for an N x N simulation with N = 256 (or 10% increase in
computational cost compared to 3% quadrature points per cell on smooth regions). Obviously
the average cost per cell decreases as N in creases.

We have successfully developed a novel structure preserving discretization which is 4th
order accurate for smooth solutions in 1D and 2D. The computational cost for evaluating
the convolution kernel is O(N) in 1D and O(N?) in 2D. where N is the number of partitions
in each direction. With the built-in Toeplitz structure, the evaluation of the convolution
(matrix-vector multiplication) is O(N log N) in 1D and O(N log N)? in 2D. The 3D code is
currently under development.

4.3 Stability Analysis of for linear Systems

We first rewrite the linear system
after spatial discretization, in matrix and vector notations:

u; + CiMu = (C\M — A)u + f (20)

16
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Here u and f are vector valued grid functions, in RM~!. Denote by
A : matrix representation of L, CiM : matrix representation of L

M and A are real (M —1) x (M —1) real matrices. By assumption M = M" > 0,A = AT > 0.
In practice, we can take M to be a preconditioner of A, if available and (' is a constant to
be determined.

For two real symmetric (M — 1) x (M — 1) matrices P and Q, we write P > Q provided
u'Pu > u'Qu for all w € RM~1\ {0}. Similarly for P > Q. We also denote the standard
L? and weighted inner products and norms in RM~! for any W = W' > 0 by

(u,v) = u'v, (u,v)w = u " Wo, (21)

and
Jull? = (w,u),  |ulf = (u, u)w. (22)

4.3.1 Stabilized Backward Euler Scheme
bel
In the matrix vector notation, the stabilized Backward Euler method (%'()a’reads

un+1 —u?

ot CiMu™™ = (C/M — A)u” + £, (23)

be
We will show that (b‘S% a u,lsat@gale both in energy norm and L? norm. The argument is
straight forwarci L sge also §[Z£ , tor example. We include it here for readers convenience in
reading section 4.3.2.

b
Theorem 1. If C'M > %A, then the stabilized backward Euler scheme (E%% 15 uncondition-
ally stable and satisfies

Ap V-1
lulIE < ®lE+ 5 > 1" (24)
n=1
and
Ay V2
N2 N2 02 012 n||2
[ (1" + Al g,y s < 1wl + AtflunllE, s + 72_; IF" Il (25)
Proof.
1
=(—+CM). 26
Q= (5 +im) (26
b
and rewrite (b%%
QU — u) + Au = §7 (27)

BE
Take (u"*! —u", 8) on both sides of (E‘?%, and write Au" = A(u" ! 4+ u”) — SA(u" —un),
we have
1

n n n n 1 n n n n n
™t =l = St =t () = - ) (28)
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or

—_

ot — w5 (R = ) = e p) (29)

2
d
From (FZ%;, we have

mha2
From (B30), we have

1 1 1
™ =[P [l =l s+ 5 (R = ) <

1
I Ngmg = 51 1P+ 1 lleys (30)

e Al &

At At
(31)
By assumption, C1M — % > 0, therefore
5 (12— ) < SR (32)

aestl
which leads to (bzfj*after summing over 7. b
The energy norm estimate (24) along is sufficient to assert gcggflitional stability of (EZ%
For sake of completeness, we proceed Wit}E%‘?e L? estimate (EB%._Take the standard inner
product with ™™ + w" on both sides of (27) to get

a1 = 3+ 5w = 5 (= ) = (et ) (38)
it follows that
n 1 n 1 n 1 n
lwr i3y — s + 5l < Sl w4 S (30)
1 2
From (E%mzﬂaand (Em?vve have
(2 Al 12,,,0) = ()2 + Al ) < SIF7 1R (35)

12estl 12estl
which leads directly to (b5 ;supon summing over n. This completes the proof of (bS ;S
]

4.3.2 Stabilized Predictor-Corrector Scheme

In this section, we will give a rigorous stability estimate of the stabilized predictor-corrector
scheme:

n+% —u" 1
————jgg————-+’C&FMth+5 = (oM — A)u™ + f"
un—l—l7 um un—l—l +un (36>
— 1 1
gt OM———— = (M — AjutE 4 f

aos1
where M and A are as in section &LB.I. Here C5M is the matrix representation of the
stabilizing term Ly and C5 is another undetermined constant.

18
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The discrete energy estimate for the stabilized Backward Euler method (E%% i section.

h.!3.l can probably be extengefi L o higher E ggr schemes including CN-AB2 as in

BD2/EP2, BD3/EP3 as in for energy estimate of up to BDF5 scheme
for Stokes e uktions The authors in ook a different approach and obtained L? error
estimate of ?ﬁ'% applied to the isotropic Cahn-Hilliard equati Oﬁlﬂibe .

S (%511“ goal is to establish similar estimates as in Theorem he second order scheme
(%B%To thi 0§ we first eliminate the intermediate variable u”*z by rewriting the first
equation of (36) as

2 L1 2 "
(E + @M) T2 = (E + CoM — A) +f (37)
and substitute it back to get
i CQM n+1 L OQ 4 -1 n
(At+ 2 )u B <At+ 2 2 (M- A)(At+c2 ) A>u (38)
+ (CoM — A)(E + M) f

To simplify the expression, we denote by

@ = ( +CM) =QF >0, (39)
T=(C;M—A)=T" >0, (40)

. evoll
and rewrite (38) as

%Qz’u,nJrl

(3G — A - TQ;'A) w +TQ; f" + 7+
(30, — (1+TQ;")A) u" + TQF " + 7+ (41)
(3Q2 = (Q+ T)Q;'A) u" + TQ, f" + £72

or

u™t! = (H—Q@Q_l(@g+T)@;1A)un+2Q;1T@Q_1fn+2@2_1fn+% = (]I—S_lA)u”+g” (42)

where ]
S= 5@2(@2 +T)'Q. (43)
and .
= 2Q; 'TQ; " f" +2Q; ' f™2. (44)
It is crucial to note that
S=8">0, (45)

0SRK2
thereforeB can be symmetrized and put in a form that completely resembles the 1st order
scheme (

S(un—i-l _ un) + Au" = Sgn

ma

clear that the following estimates are crucial for the estimates of the 2nd order Scheme

2ndc
BE 2 1
Upon comparing ( b‘?% with hHQ ;e and inspecting the left hand side of ( and E :g
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Lemma 1. If A=AT >0, M =M" > 0 and C,M > A, then
(i)

A 1
Z 4L - <S8 47
> TA S (47)
(1)
Q2 Q2
== <SS <= 48
4 — = 2 (48)
defS |deft defT
where S, Qy are defined by (&I%;, (&369; and (h’%ﬁ’
2
Proof. Part (i): Denote by B = A + A and Apax, fmax the maximal eigenvalue of
Bv = AQqv, and Bwv = uSv, (49)
de .
respectively, where Qs is given by (}‘26 i We will show that
A < OQM - )\max <1l = Hmax <2 (5())

The first implication is obvious since )\maxe< } if and only if B < Q5. As to the second

implication, we first note that the pencils in (h@; are isospectral to

B:Q 'Bzw =Aw and B:S 'Biw = pw, (51)
respectively (where w = B2v). Therefore
< zTB:S ' Box
max — a. - 7T _
H weR%}\{o} x'tx
TB:Q, ' (2Q; — B)Q, 'B:
— max 2% Qo ( Q?r )Qo x (since Qs + T = 205 — B)
zeRM~-1\{0} T X
1 —1 1 1 1 1 -1 1 (52>
T (BaQQ Ba) (B—§(2Q2 _ B)B—i) (1535@2 Ba)w
= max 2 T
zeRM—1\{0} T T
TB(2B ' - 1)B -
= max 2 B = ) :1:, where B = B%Qg_lB%
zeRM-1\{0} T x
03 R
From (%ell Pand the definition of B, we see that
1
Prmax < 2Max \; (2)\— - 1) Aj = max (4\; — 2)\?) = max2<1 - (1- )\j)2> (53)
j j j J

. . . eig2 SmhA
Since A\j < Apax < 1, it follows that pimax < 2. This completes the proof of (%Ui, hence (47).
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Part (ii): Since

1 4
S = 5@2(@2 + T)_1Q2 = QZ(A_t + 4C,M — QA)_le (54) |asi
Therefore, since CoM > A,
4+4CM—2A> 4+2(JM—2@ (55) 2
At 2 = At 2T e 4
On the other hand 4 4
_ — < — <

thus (E’%ﬁg%l]%ows from (EZSL%, (%%%, and (E%% O

1 1
TheorerBS%KZUnc{f{dggf same assumptions in Lemma ?mmae stabilized predictor-corrector
scheme (B6) (or (46))1s unconditionally stable and admits the following estimates:

N-1
n n+i
a7 < [l + A (IF 1P+ 112 117) (57) [Ano:
n=0
and
At = .
Ju ) < [lu’]® + 702Hu0|!12w + ALY (I R+ IR ) (58) [12b
n=0

A bound
Proof. Proof of (%ni o

all 2ndeq2
Similar to the derivation of (E% ;, we can obtain the following estimate from (hG;:

n n 1 n n n n n
™™ = wflg s + S5 = u"[2) = (™ — ", Sg") (59)
SmhA
With (hm7 Fand the inequality

1 At
(wrt —ur 8g") < - urt — | + S5 Sg" P, (60)
we see that
1 n+11(2 ni|2 At ni|2
Sz — ) < SPlISg™ P (61) [Tom

. . ] ThmAnorm2ndeql de
To estimate the right hand side of (61), we note from (hﬁgthat
1
ISg"[|* < 2(|25Q; ' TQ; " £"||* + 2/|28Q; 2| (62)
It suffices to estimate Q,'TQ,'S*Q,'TQ," and Q;'S?Q;*.
Since S < %, and T = C5M — A < Q,, we have

I (63)

| =

- IR _
Q;'TQ;'S°Q;'TQ;" < 705" T°Q; " <

21



and

1
Q;'sQ;" < 1 (64)
thus )
ISg™[I* < 201 £"1* + 2]l £ 2. (65) [gsn
ThmA 1
From (}bfjl (%b 7, We obtain
n n n n 1
[ R < T+ AL(F 1P+ 11772 07) (66)

Anormbound

a. er C]ilmmll'lg over n. (OS K2

gng is sufficient for unconditional stability of
or sake of completeness.

—

which completes the proof of

The energy norm estimate
proceed wi Ethe gj estimate
Proof of mhail

1 2 2
Rec the derlvatlon that leads to (@%;aand apply it to (hnﬁf we get the analogue of (F%ZI;
r ( hG%

—

fo
n n 1
|w +1IIQ_% — [l II§_, 5lISg" [ (67) [smh:

d
It remains to estimate ||Sg"||3_,. From (h%% we have

Sg" = Qa(Q2 + T) "' Qu(Q; ' TQ; £~ + Q3 ' f773)

\ (68)
= (@' +Q;'TQy ) H(Qy ' TQ; " + Q' f2)
Consequently,
ISg" 17+ < 2(Q" + Qy'TQ; 1) 'Qy ' TQ; ! f13 (69) St
+2//(Q7" + Q3 'TQ; ) ' Q; 2|
S
The first term on the right hand side of (%6% can be estimated by
Q! + Q' TQy ) ' Qy ' TQ; ™17+
=||A73(Q;" + Q' TQ; ) ~'Q; ' TQ; 712 -

=[(AZQ; A% + A3Q;'TQ; ' A) L (A2Q; 'TQ;  AZ)A 2 7
—1 n n
<Az = (I3

where we have used the fact that if P = PT > 0, Q = Q" > 0, then P(P+Q)*P < P(P)°P =
[. Similarly, the second term is bounded by

1(Qz" + Q' TQy ) Qy  F™F 2|20 < [l f7F2 13-, (71)

thus )
ISg™ 12—+ < 207 + 201 £ 7217 (72) | Thm
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1 ThmAi2ndeq3
After summing (%n% Sover n and applying the estimate ((5 E, we get

N-1
n n L
113y < Hullz_s + > (3 + 121 ) (73)
n=0
SmhA Seqt ThmAi2ndeq3
From ( T} and (ES} arrnl% (72;, o have
1 1 N-1
n n L
NI < S (Collu By + 1) + 3 (17 + ) (74) [T
n=0

12 d ThmAi2ndeq4
Thus (%Siofu(;lllows from multiplying (?ZI; BIyHKe%. O
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