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Abstract
This work proposes second-order and fourth-order versions of a Cartesian grid based kernel-
free boundary integral (KFBI) method for the biharmonic equation on both bounded irregular
domains and singly periodic irregular domains. It is further development of the previous
KFBImethod for second-order elliptic PDEs. It reformulates boundary value problems of the
fourth-order PDE as boundary integral equations of the first kind but the solution never needs
to know the fundamental solution or Green’s function of the elliptic operator. Evaluation
of boundary or volume integrals in the solution of boundary integral equations is made
by solving equivalent interface problems on Cartesian grids with standard finite difference
methods and fast Fourier transform based solvers. The work decomposes the biharmonic
equation into two Poisson equations. It assumes the solution to one Poisson equation, which
has no boundary conditions, as the sum of a volume integral with a double layer boundary
integral, and applies Green’s third identity to derive a scalar boundary integral equation from
the other Poisson equation that are subject to two boundary conditions. In the solution of the
scalar boundary integral equation, each volume or boundary integral is evaluated with the
KFBI method. Numerical examples are presented to demonstrate the solution accuracy and
algorithm efficiency. A remarkable point of the work is that the nine-point compact difference
scheme in dealingwith each split second-order elliptic interface problemon irregular domains
yields fourth-order accurate solution for the biharmonic equation.

Keywords Biharmonic equation · Interface problem · Boundary integral method · Cartesian
grid method · Nine-point compact finite difference scheme

1 Introduction

The biharmonic equation has important applications in fluid mechanics [36,41,69], linear
elasticity [17,68,75] and the theory of thin plates [43,62,79]. The unknown in the biharmonic
equation represents the stream function of an incompressible two-dimensional creeping flow
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in fluid mechanics, the Airy stress function in linear elasticity or the vertical displacement
due to an external force in the theory of thin plates. Efficient, accurate and stable numerical
algorithms for the biharmonic equation remain active research topics in the numerical analysis
and scientific computing community over the past decades. There are three major classes of
numerical methods for the biharmonic equation in the literature.

Finite element method (FEM) is one of the most widely used techniques for the bihar-
monic equation. It is based on some variational formulations of the equation and suitable
for problems on irregular domains, which are often partitioned into unstructured triangu-
lar or tetrahedral grids. Standard FEMs for the biharmonic equation include conforming
FEM [3,20], non-conforming FEM [1,4,59,64] as well as mixed FEM [10,16,21,27,34,70].
Conforming FEMs are based on high regularity assumption on the solution and have high
order smoothness requirement on finite elements. Non-conforming and mixed FEMs also
ask for sophisticated and special finite elements. Usually discrete finite element systems for
the biharmonic equation have large condition numbers, which make efficient solution of the
resulting equations a problem itself. Recent literature on FEMs for the biharmonic equation
includes interior penalty Galerkin FEM [9,78], discontinuous Galerkin FEM [22] and weak
Galerkin FEMs [65,66,86]. With FEMs, high-order accuracy may not be easy to obtain and
computational cost could be relatively large in general.

Finite difference method (FDM) is another widely used technique for the biharmonic
equation. ItworkswithCartesian grids and is especially good for problemson regular domains
such as a rectangle or a union of rectangles [7,77]. Standard FDMs for the biharmonic
equation have two approaches: direct methods and indirect methods. The first one directly
discretizes the biharmonic operator by a 13-point or 25-point finite difference stencil [23]. The
resulting linear system by this approach is ill-conditioned [24,30,37] and requires suitable
preconditioning [80] or matrix decomposition technique [7]. The second one is a splitting
method, which introduces an intermediate variable and decomposes the fourth-order elliptic
equation into two second-order equations [2,28,29]. On regular domains or circular domains,
the latter approach yields linear equations that can be efficiently solved by fast Poisson
solvers [11,39,58]. The FDM [58] for the biharmonic equation on circular domains solves
the problem in polar coordinates. On general irregular domains, finite difference equations
should be modified at irregular grid nodes, at which finite difference stencils go across the
boundary of the irregular domain. A successful example is the immersed interface method
[14], where the two split Poisson equations are solved by the immersed interface method
with augmented variables [60]. The method [14] for the biharmonic equation on irregular
domains yields second-order accurate results and takes advantages of fast Poisson solvers on
Cartesian grids.

Boundary integral equation methods (BIEM), including boundary integral method (BIM)
and boundary element method (BEM), are the third class of techniques for the biharmonic
equation. For the biharmonic equation with a homogeneous right hand side, the methods
transform the problem on a domain into one defined only on the domain boundary. Dimension
reduction is a major advantage of BIEMs, which avoids generation of unstructured grids
for irregular domains. Standard BIEMs for the biharmonic equation also have two sub-
classes: direct methods and indirect methods. The direct methods (e.g., [18,19,25,26,33,55])
solve a pair of boundary integral equations that directly treat the Laplacian of the solution
and the normal derivative of the Laplacian on the boundary as two unknowns. With the
indirect methods (e.g., [5,44,45]), which often derive equations by the Chakrabarty and
Almansi formula, unknowns of the reformulated boundary integral equations are intermediate
variables and do not have physical meaning. Most BIEMs solve a system of two boundary
integral equations while the indirect methods in [46–48] work with scalar boundary integral
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equations. As for other PDEs [8,56], BIEMs typically yield dense matrices and become
computationally efficient only when they are accelerated by fast summation techniques such
as the fast multipole method [35,41], the fast Fourier–Galerkin method [50] or the tree
algorithm based on randomized factorization for low rank matrices [49]. For the biharmonic
equation with a non-trivial non-homogeneous source, BIEMs involve expensive volume
integrals, losing the advantage of dimension reduction [12]. Besides, due to the singularity of
the fundamental solutions of the harmonic and biharmonic operators, BIEMs often need to
carefully handle singular, nearly singular or hyper-singular boundary integrals. Otherwise,
accuracy or stability may become an issue.

In addition to the three main classes of numerical methods above for the biharmonic equa-
tion, alternative methods such as those based on complex variable theory [13,63], spectral
or pseudo-spectral methods [6,32,38,42] and methods of fundamental solutions [51–54,57]
exist in the literature. In particular, the methods of fundamental solutions have gained some
popularity over the years [15,31,61,67,73]. Strengths and limits of methods of fundamen-
tal solutions are quite similar to BIEMs except the issue of integral singularity associated
with BIEMs is replaced by the ill-conditioning property of discrete equations in methods of
fundamental solutions.

This work will solve the biharmonic equation on irregular domains with a kernel-free
boundary integral (KFBI) method. The KFBI method is a Cartesian grid based boundary
integral method, which is originally proposed for second-order elliptic PDEs [83]. It solves
boundary value or interface problems in the framework of BIMs but does not need to know
or compute the integral kernel, the fundamental solution or Green’s function of the elliptic
operator. The method evaluates a boundary or volume integral by solving an equivalent
simple interface problem with fast elliptic solvers on Cartesian grids [84,85]. It does not
have singularity issues associated with the standard (traditional) BIMs. Recent version of the
KFBI method for the modified Helmholtz equation [81,82] has fourth-order accuracy.

This study is further development of the KFBI method for the biharmonic equation. As
in Jeon’s paper [46], this work also decomposes the biharmonic equation into two Poisson
equations, assumes the solution to one Poisson equation, which has no boundary conditions,
as the sum of a volume integral with a double layer boundary integral, and applies Green’s
third identity to derive a scalar boundary integral equation from the other Poisson equation that
are subject to two boundary conditions. The difference from Jeon’s approach is that Green’s
functions in this work are defined on a rectangle. Their analytical expressions are hard to
obtain or compute. As the KFBI method adapts the Cartesian grid based indirect evaluation
technique, singularity issues associatedwith other BIEMs are removed. The present approach
evaluates a boundary or volume integral by solving a corresponding equivalent interface
problem by the standard five-point or the nine-point compact finite difference scheme on
Cartesian grids. The resulting discrete equations are calculated by fast Fourier transform
(FFT) based elliptic solvers.

The proposed KFBI method avoids generation of unstructured grids as required by stan-
dard FEMs and does not suffer from singularity issues associated with traditional BIEMs.
The resulting discrete equations does not have ill-conditioning property. This work solves
the biharmonic equation in two different types of computational domains. The first one is
a bounded irregular domain and the second one is a singly periodic irregular domain. The
latter case has not been considered yet with BIEM in the literature.

The remainder of this paper is organized as follows. In Sect. 2, the biharmonic Dirichlet
problem on an irregular bounded domain and the biharmonic singly periodic problem in a
periodic curved pipe are described. Section 3 is devoted to the KFBI method, including the
reformulated BIE and implementation details. Numerical examples of the biharmonic prob-
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Fig. 1 Problem domains: a Ωb is an irregular bounded domain; b Ωp is a periodic curved pipe with the
periodic boundary condition imposed on the fictitious cutting surfaces γ1 and γ2

lems with both second-order and fourth-order KFBI methods are given in Sect. 4. Finally,
Sect. 5 summarizes the proposed method and discusses its potential improvement and exten-
sions for the future work.

2 Boundary Value Problems

We solve the biharmonic equation on planar irregular domains and consider two cases: the
first one is on a bounded irregular domain and another one is on a singly periodic irregular
domain, modeling a periodic curved pipe.

Let Ωb ⊂ R
2 be a bounded irregular domain with smooth boundary Γb = ∂Ωb on the

plane (see Fig. 1a for illustration). The first biharmonic boundary value problem reads

�2u = fb in Ωb,

u = gb on Γb,

un = jb on Γb.

(1)

Here, u is the unknown function and fb, gb and jb are sufficiently smooth known functions;
n is the unit outward normal on Γb; un = ∂u/∂n is the normal derivative of u.

Let Ωp ⊂ R
2 be a singly periodic irregular domain (see Fig. 1b for illustration) and

Γp = Γ1 ∪ Γ2 with Γ1 and Γ2 denoting the upper and lower parts of the boundary, both
of which are assumed to be smooth. Let γ1 and γ2 be the fictitious cutting surfaces of the
singly periodic domainΩp . The second biharmonic boundary value problem for the unknown
function u = u(x) with x = (x1, x2)T reads

�2u = f p in Ωp,

u = gp on Γp,

un = jp on Γp,

u(x) = u(x + L) on Ω̄p.

(2)

Here, f p , gp and jp are also sufficiently smooth known functions; n is the unit outward
normal on Γp; un = ∂u/∂n denotes the normal derivative of u; L = (L, 0)T , whose first
component L denotes a period along the horizontal direction of the domain and second
component vanishes, implying the single periodicity of u; Ω̄p = Ωp ∪ Γp is the closure of
Ωp .
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Fig. 2 Computational domains Ωb and Ωp are embedded in lager rectangles Bb and Bp , respectively

3 Kernel-Free Boundary Integral Method

Unlike the traditional boundary integral method [45–47] for the biharmonic equation, the
kernel-free boundary integral method does not work with the fundamental solution of the
biharmonic equation in the free space. Instead, it works with Green’s functions in a bounded
domain. In this work, the biharmonic boundary value problems are first reformulated as
boundary integral equations (BIEs) in terms of Green’s functions associated with the Laplace
operator in a rectangle and then the BIEs are solved with a Cartesian grid method.

3.1 Green’s Functions

Let Bb and Bp be two rectangles, which respectively embed the simple bounded irregular
domainΩb and the singly periodic irregular domainΩp so that Γb and Γp become interfaces
in the rectangles. In the latter case, the fictitious boundaries γ1 and γ2 are part of the right
and left edges of Bp . See Fig. 2 for illustration.

Let Gb(x, y) with y = (y1, y2)T ∈ R
2 be Green’s function associated with the Laplace

operator in Bb that satisfies

�yGb(x, y) = δ(x − y), y ∈ Bb,

Gb(x, y) = 0, y ∈ ∂Bb,
(3)

for each x ∈ Bb. Let Gp(x, y) be Green’s function associated with the Laplace operator in
Bp that satisfies

�yGp(x, y) = δ(x − y), y ∈ Bp,

Gp(x, y) = Gp(x, y + L), y ∈ B̄p,

Gp(x, y) = 0, y ∈ γ3 ∪ γ4,

(4)

for each x ∈ Bp . Here, B̄p = Bp ∪ ∂Bp is the closure of Bp .

3.2 Boundary Integral Equation Formulation

As the boundary integral equations to be reformulated from the biharmonic BVPs (1) and
(2) above have the same form, for conciseness, from now on we will omit the subscripts “b”
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and “p” in the symbols for the domains and functions and unify them as Ω , Γ , B, f , g, j
and G(x, y). That is, let Ω , Γ and B represent the problem domain, domain boundary and
the larger rectangle, respectively; f , g, and j be the given functions in the corresponding
biharmonic BVP; G(x, y) be Green’s function in B.

Weworkwith the splitting technique to decouple the biharmonic equation into twoPoisson
equations. Let

v = �u in Ω.

Then each of the biharmonic BVPs (1) and (2) is divided into two subproblems:
⎧
⎨

⎩

�u = v in Ω,

u = g on Γ ,

un = j on Γ ,

(5)

and
�v = f in Ω. (6)

Thefirst subproblem (5) has twoboundary conditions and is over-determinedwhile the second
subproblem (6) has no boundary condition and is under-determined. They are coupled by the
intermediate variable v. Fortunately, Green’s third identity holds,

∫

Ω

G(x, y)�u(y) dy +
∫

Γ

∂G(x, y)
∂ny

u(y) dsy −
∫

Γ

G(x, y)
∂u(y)
∂ny

dsy

=
{
u(x), x ∈ Ω,
1
2 u(x), x ∈ Γ .

Here, ny denotes the unit outward normal vector at point y ∈ Γ . Plugging the PDE, the
Dirichlet and Neumann boundary data u = g and ∂nu = j in the first subproblem (5) into
Green’s third identity above, one gets

∫

Ω

G(x, y)v(y) dy +
∫

Γ

∂G(x, y)
∂ny

g(y) dsy −
∫

Γ

G(x, y) j(y) dsy

=
{
u(x), x ∈ Ω,
1
2 g(x), x ∈ Γ .

(7)

As v satisfies the Poisson equation in the second subproblem (6), it can be regarded as the
summation of a Newton potential with respect to the known function f and a double layer
potential with an unknown density ξ , which is defined on the domain boundary Γ and to be
determined later, i.e.,

v(x) =
∫

Ω

G(x, y) f (y) dy +
∫

Γ

∂G(x, y)
∂ny

ξ(y) dsy. (8)

Substituting (8) into (7) yields
∫

Ω

G(x, y)
∫

Ω

G(y, z) f (z) dz dy +
∫

Ω

G(x, y)
∫

Γ

∂G(y, z)
∂nz

ξ(z) dsz dy

+
∫

Γ

∂G(x, y)
∂ny

g(y) dsy −
∫

Γ

G(x, y) j(y) dsy =
{
u(x), x ∈ Ω,
1
2 g(x), x ∈ Γ .

(9)

The identity (9) gives the representation formula for the solution u as well as the boundary
integral equation for ξ to be solved. For simplicity, following the notations for the volume
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and boundary integrals in [82,85], one may rewrite (9) as

u = Mg − L j + G(G f ) + G(Mξ) in Ω, (10)

G(Mξ) =
(
1

2
− M

)

g + L j − G(G f ) on Γ . (11)

Here, M, L, and G are respectively the double layer, single layer boundary and volume
integrals, given by

Mϕ(x) =
∫

Γ

∂G(x, y)
∂ny

ϕ(y) dsy,

Lψ(x) =
∫

Γ

G(x, y)ψ(y) dsy,

G f (x) =
∫

Ω

G(x, y) f (y) dy,

(12)

for functions ϕ, ψ and f . Note that the operator notations M, L, and G would also be
endowed with the subscripts “b′′ or “p′′ in the ensuing subsection, together with the symbols
Ω and G(x, y) in the definition (12), when the specific biharmonic BVP (1) or (2) is under
consideration. With the jump relations of the double layer potential, single layer potential
and Newton potential [40], the BIE (11) can be reinterpreted in a clearer form

(G(Mξ))+ = g − (Mg)+ + (L j)+ − (G(G f ))+ on Γ . (13)

Or alternatively,

(G(Mξ))− = −(Mg)− + (L j)− − (G(G f ))− on Γ . (14)

Here, superscript “+” or “−” suggests that the value of the function on the interface is
one-sided limit from the domain Ω or Ωc, respectively.

The BIE (13) or (14) can be solved by the generalized minimal residual (GMRES) method
[72] after the composite integral operator GM is further discretized. Once a numerical solu-
tion to the BIE is computed, it is put into the representation formula (10) to obtain an
approximation for u. In other words, the solution procedure of this work primarily consists
of two components: (1) evaluation of boundary and volume integrals in Ω; (2) interpolation
for boundary values of the integrals on Γ . These two parts, which are essential in approxima-
tion for each term of (10) and (13) (or (14) as an alternative), will be respectively discussed
in the following two subsections.

Before proceeding, we give two remarks about the biharmonic singly periodic problem
(2) in Ωp . First, any involved function defined on the domain boundary Γp = Γ1 ∪ Γ2 is
actually piece-wisely defined. In the BIE (13) [or (14)], which takes a general form, the
functions g and j are the known Dirichlet and Neumann boundary data provided g|Γ1 = g1,
g|Γ2 = g2, j |Γ1 = j1, j |Γ2 = j2, where g1, g2, j1, j2 are given in Sect. 2. Second, any
function defined on the domain boundary Γp , say φ, despite piece-wisely defined, should be
regarded as a whole. From now on, we use φ1 and φ2 to denote the restriction of φ on Γ1 and
Γ2 respectively, i.e., φ|Γ1 = φ1, φ|Γ2 = φ2.

3.3 Evaluation for Boundary andVolume Integrals

In this subsection, we present the Cartesian grid based indirect method for evaluating bound-
ary and volume integrals. In themethod, integrals are regarded as solutions to some equivalent
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simple interface problems. Analytical expressions of Green’s functions are no longer needed.
This is a major difference of the KFBI method from the traditional BIEMs.

3.3.1 Equivalent Interface Problems

For the biharmonic Dirichlet problem (1) defined in irregular bounded domain Ωb with
the corresponding Green’s function Gb(x, y), equivalent interface problem of the boundary
integral Mbϕ, −Lbψ and the volume integral Gb f can be interpreted in an unified form

�v = F inΩb ∪ Ωc
b ,

[v] = Φ onΓb,

[vn] = Ψ onΓb,

v = 0 on ∂Bb.

(15)

Here, F ,Φ andΨ for potentials of different type have different values [76,81,85]. Specifically,
for double layer potential Mbϕ, F = 0, Φ = ϕ, Ψ = 0. For single layer potential Lbψ ,
F = 0,Φ = 0,Ψ = ψ . While for Newton potential Gb f , F equals f insideΩb and vanishes
in Ωc

b , Φ = 0, Ψ = 0.
Similarly, for the biharmonic singly periodic problem (2), the formally unified equivalent

interface problem of the integrals Mpϕ, −Lpψ and Gp f reads

�v = F inΩp ∪ Ωc
p,

[v] = Φi onΓi , i = 1, 2,

[vn] = Ψi onΓi , i = 1, 2,

v = 0 on ∂Bp,

v(x) = v(x + L) for x ∈ B̄p.

(16)

Here, for double layer potentialMpϕ, F = 0, Φi = ϕ|Γi = ϕi , Ψi = 0, i = 1, 2. For single
layer potential Lpψ , F = 0, Φi = 0, Ψi = ψ |Γi = ψi , i = 1, 2. While for Newton potential
Gp f , F equals to f inside Ωp and vanishes in Ωc

p , Φi = 0, Ψi = 0, i = 1, 2.
Therefore, to evaluate the volume or boundary integral in (11) for the biharmonic problem

(1) or (2), we turn to solving the interface problem (15) or (16) with the source term F and
the jump Φ, Ψ or Φi , Ψi (i = 1, 2) on the interface determined by the corresponding values
given above.

3.3.2 Cartesian Grid Method for Interface Problem

The interface problems (15) and (16) are solved by a Cartesian grid method, whose second-
order version for variable coefficients elliptic PDEs on irregular bounded domain is proposed
by Ying and Wang [85]. A fourth-order version of the method for the modified Helmholtz
equation is proposed in [81]. It is straightforward to apply the methods [81,85] to get second-
order and fourth-order accurate solutions to the interface problem (15). For the interface
problem (16), special manipulation is needed in dealing with the disconnected interfaces Γ1

and Γ2 as well as the periodic boundary conditions.
To begin with, the computational domain Ωp is partitioned into Cartesian grid with the

horizontal and vertical mesh parameters uniformed as h. Then the interfaces Γ1 and Γ2 are
discretized by a set of quasi-uniformly spaced points, respectively. Next, we use the standard
five-point finite difference scheme or the nine-point compact difference scheme [71,74] to
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discretize the control equation �v = F . The established linear system needs to be corrected
as the local truncation error near the interface Γ1 and Γ2 is large. Here, correction technique
is completely the same as that needed in solving the interface problem (15) except the two
interfaces Γ1 and Γ2 are treated separately. The correction termwith respect to the grid points
near the interface Γi , (i = 1, 2) contains the jumps of partial derivatives of v which can be
derived according to the reiterated conditions as below

�v = F inΩp ∪ Ωc
p,

[v] = Φi onΓi ,

[vn] = Ψi onΓi .

(17)

Refer to [81,82,85] for implementation details for the second-order or fourth-order versions
of the method. The resulting modified system is finally solved by an FFT solver with the
horizontal direction subject to the periodic boundary condition. In this way, an approximation
of v, and more importantly, its equivalent boundary or volume integral is obtained at the
Cartesian grid nodes.

3.4 Interpolation for Boundary Values

The purpose of solving the interface problems above is to indirectly evaluate a boundary
or volume integral at discretization points on the interfaces or the boundary of the original
problem domain. After the solution to an interface problem is calculated at Cartesian grid
nodes, one needs to interpolate them to get its values at points on the interfaces. Once again,
the interpolation methods proposed in [81,85] can be directly applied for the biharmonic
Dirichlet problem (1) in the bounded irregular domain. While for the biharmonic problem
on the singly periodic irregular domain (2), interpolation for boundary values at Γ1 and Γ2

should be performed separately, since the required jumps of partial derivative on different
boundaries are derived according to different interface conditions. However, the details are
omitted to limit the number of pages.

4 Numerical Results

In this section, we present numerical results for both the biharmonic Dirichlet problem on the
bounded irregular domain and the problem on the singly periodic irregular domain with the
proposed second-order and fourth-order kernel-free boundary integral methods, respectively.

For numerical tests of the biharmonic Dirichlet problem, we use a rotated ellipse and a
rotated star-shaped domain as the computational domains. The rotated ellipse is given by

{
x = cx + ra cos θ cosα − rb sin θ sin α

y = cy + ra cos θ sin α + rb sin θ cosα
for θ ∈ [0, 2π),

where (cx , cy) is the coordinate of the rotated ellipse center, α is the rotation angle, ra and
rb are the major and minor radius of the ellipse, respectively. The bounding box B for the
interface problems is set to be B = (−π + cx , π + cx ) × (−π + cy, π + cy).

The star-shaped domain is given by
{
x = cx + p(θ) cosα − q(θ) sin α

y = cy + p(θ) sin α + q(θ) cosα
for θ ∈ [0, 2π),
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with
{
p(θ) = [

(1 − c) + c · cos(mθ)
]
cos θ

q(θ) = [
(1 − c) + c · cos(mθ)

]
sin θ

,

where m is the fold number and c = 0.2 remains unchanged. The corresponding bounding
box B is chosen to be (−1.2 + cx , 1.2 + cx ) × (−1.2 + cy, 1.2 + cy).

For numerical tests of the biharmonic singly periodic problem, we set both the upper and
lower boundary of the curved pipe as the sine curve in the following form,

⎧
⎨

⎩

x = −1.0 + θ

π

y = A · sin(κ θ + α) + D
for θ ∈ [0, 2π),

where A is the amplitude, κ is the wave number, α is the phase angle, and D is the mean
height of the sine curve. The bounding box B for the interface problems is fixed to be
B = (−1, 1) × (−1, 1).

In all numerical examples, the curves are discretized into evenly spaced points with respect
to the parameter θ and the discrete boundary integral equations are solved with the gener-
alized minimal residual (GMRES) [72] method. In each test, the GMRES iteration starts
with the trivial zero initial guess. For different numerical examples with respect to different
types of biharmonic problems and under different accuracy requirements, the tolerance ε for
terminating the GMRES iteration is specified exclusively so that the accuracy order can be
observed on the constantly refined Cartesian grids. Numerical results are illustrated in tables
and figures. Each table has five rows, presenting the grid sizes used in the Cartesian grid, the
total number of discretization points on the boundary curve, the numbers of GMRES itera-
tion in solving the BIE, the discrete maximum error of the numerical solution at the interior
grid nodes and the CPU times (in seconds) by a MacBook Pro laptop computer, which has a
2.5GHz Intel Core i7 processor. Each figure corresponds to an example, showing 36 isolines
of the numerical solution in the interior and exterior of the problem domain, respectively.

4.1 Biharmonic Dirichlet Problem

Example 1 This example solves the non-homogeneous biharmonic Dirichlet problem on the
rotated ellipse with the KFBI method. The tolerance in the GMRES iteration for the second-
order and fourth-order KFBI methods is set to be 10−4 and 10−8, respectively. Parameters
of the rotated ellipse are as follows:

cx = 0.2, cy = 0.4, ra = 0.8π, rb = 0.45π, α = 6π/7.

The biharmonicDirichlet andNeumann boundary conditions on the rotated ellipse are chosen
so that the exact solution reads

u(x, y) = x2(1 − x2)y2(1 − y2).

Numerical results with second-order and fourth-order accuracy are summarized in Tables 1
and 2, respectively (Figs. 3, 4, 5, 6).

Example 2 This example solves the homogeneous biharmonic Dirichlet problem on a rotated
star-shaped domain with the KFBI method. The tolerance in the GMRES iteration for the
second-order and fourth-order KFBImethods is set to be 10−8 and 10−9, respectively. Param-
eters of the rotated star-shaped domain are as follows:
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Table 1 Numerical results with second-order accuracy of Example 1

Grid size 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

M 64 128 256 512 1024

#GMRES 53 87 46 13 13

CPU (s) 7.76E−1 3.42E+0 9.50E+0 3.01E+1 1.25E+2

‖eh‖∞ 7.07E−2 2.47E−2 2.13E−3 5.53E−4 1.61E−4

Order – 1.52 3.54 1.94 1.78

Table 2 Numerical results with fourth-order accuracy of Example 1

Grid size 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

M 64 128 256 512 1024

#GMRES 31 41 47 33 26

CPU (s) 9.61E−1 2.37E+0 8.10E+0 2.13E+1 6.82E+1

‖eh‖∞ 2.65E−3 1.28E−4 4.19E−6 1.85E−7 1.47E−8

Order – 4.37 4.93 4.50 3.65

Fig. 3 Isolines of the numerical
solution with fourth-order
accuracy in Example 1 on the
1024 × 1024 grid

m = 5, cx = 2.0, cy = 2.0, α = 0.75π.

The biharmonic Dirichlet and Neumann boundary conditions are chosen so that the exact
solution reads

u(x, y) = [
(x + 1.2)2 + (y + 1.6)2

]
[

log
√

(x + 1.2)2 + (y + 1.6)2 − 1.0

]

.

Numerical results with second-order and fourth-order accuracy are summarized in Tables 3
and 4, respectively.
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Fig. 4 Isolines of the numerical
solution with fourth-order
accuracy in Example 2 on the
1024 × 1024 grid

Fig. 5 Isolines of the numerical
solution with fourth-order
accuracy in Example 3 on the
1024 × 1024 grid

4.2 Biharmonic Singly Periodic Problem

Example 3 This example solves the non-homogeneous biharmonic singly periodic problem
on the periodic curved pipe with the KFBI method. The tolerance in the GMRES iteration for
the second-order and fourth-order KFBI methods is set to be 10−7 and 10−11, respectively.
Parameters of the upper boundary (l1) and lower boundary (l2) are as follows:

{
l1 : A1 = 0.25, κ1 = 1, α1 = 0.2π, D1 = 0.35

l2 : A2 = 0.25, κ2 = 1, α2 = 0.2π, D2 = −0.35
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Fig. 6 Isolines of the numerical
solution with second-order
accuracy in Example 4 on the
1024 × 1024 grid

Table 3 Numerical results with second-order accuracy of Example 2

Grid size 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

M 64 128 256 512 1024

#GMRES 70 87 181 72 25

CPU (s) 7.02E−1 2.65E+0 1.92E+1 4.31E+1 1.13E+2

‖eh‖∞ 2.02E−3 1.83E−4 1.75E−5 5.03E−7 5.29E−8

Order – 3.46 3.38 5.12 3.25

Table 4 Numerical results with fourth-order accuracy of Example 2

Grid size 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

M 64 128 256 512 1024

#GMRES 36 49 59 53 30

CPU (s) 1.02E+0 2.53E+0 8.78E+0 3.17E+1 7.07E+1

‖eh‖∞ 3.74E−3 1.24E−4 7.84E−6 2.28E−7 2.71E−9

Order – 4.91 3.98 5.10 6.39

The biharmonic Dirichlet and Neumann boundary conditions on periodic curved pipe are
chosen so that the exact solution reads

u(x, y) = cos(πx)ey .

Numerical results with second-order and fourth-order accuracy are summarized in Tables 5
and 6, respectively.

Example 4 This example solves the non-homogeneous biharmonic singly periodic problem
on the periodic curved pipe with the KFBI method. The tolerance in the GMRES iteration for
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Table 5 Numerical results with second-order accuracy of Example 3

Grid size 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

M 64 128 256 512 1024

#GMRES 28 33 30 16 16

CPU (s) 1.19E+0 5.43E+0 2.23E+1 4.81E+1 2.18E+2

‖eh‖∞ 1.61E−4 3.71E−5 9.46E−6 2.57E−6 5.91E−7

Order – 2.12 1.97 1.88 2.12

Table 6 Numerical results with fourth-order accuracy of Example 3

Grid size 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

M 64 128 256 512 1024

#GMRES 32 40 45 40 28

CPU (s) 3.28E+0 8.33E+0 3.67E+1 1.38E+2 4.57E+2

‖eh‖∞ 5.20E−5 3.92E−7 2.26E−8 6.97E−10 3.00E−11

Order – 7.05 4.12 5.02 4.54

Table 7 Numerical results with second-order accuracy of Example 4

Grid size 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

M 64 128 256 512 1024

#GMRES 26 27 32 30 28

CPU (s) 1.28E+0 3.82E+0 1.73E+1 6.54E+1 2.69E+2

‖eh‖∞ 3.68E+0 1.88E−1 9.91E−3 2.55E−3 6.20E−4

Order – 4.29 4.25 1.96 2.04

the second-order and fourth-order KFBI methods is set to be 10−4 and 10−6, respectively.
Parameters of the upper boundary (l1) and lower boundary (l2) are as follows:

{
l1 : A1 = 0.15, κ1 = 4, α1 = 0.5π, D1 = 0.5

l2 : A2 = 0.15, κ2 = 4, α2 = 1.5π, D2 = −0.5

The biharmonic Dirichlet and Neumann boundary conditions on periodic curved pipe are
chosen so that the exact solution reads

u(x, y) = sin(π y)

1 + e
0.5−|x |

ε

.

Here, ε is a small quantity. In this example, we set ε = 0.01. Numerical results with second-
order and fourth-order accuracy are summarized in Tables 7 and 8, respectively.

5 Discussion

This work proposes second-order and fourth-order versions of a KFBI method for the bihar-
monic equation on both bounded irregular domains and singly periodic irregular domains.
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Table 8 Numerical results with fourth-order accuracy of Example 4

Grid size 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

M 64 128 256 512 1024

#GMRES 26 38 58 67 63

CPU (s) 4.40E+0 1.27E+1 6.20E+1 2.41E+2 8.61E+2

‖eh‖∞ 1.97E−1 2.83E−1 3.14E−3 1.37E−4 6.82E−6

Order – −0.52 6.49 4.52 4.33

The method adopts the splitting approach, which decomposes the fourth order elliptic BVP
into two coupled Poisson BVPs, and derives BIEs based on Green’s third identity. Following
the lines of the previous second-order and fourth-order accurate versions [81,85] of the KFBI
method, it does not need to know or compute the fundamental solution or Green’s function of
the elliptic differential operator and does not directly discretize boundary or volume integrals
by any numerical quadrature. Instead, it evaluates boundary and volume integrals indirectly
by solving equivalent but simple interface problems on Cartesian grids and takes advantages
of fast elliptic solvers after routine modification to the right hand side of the discrete system
at irregular grid nodes. The KFBI method for the problems shows its strengths over tradi-
tional boundary integral equation methods. It avoids evaluating singular, nearly singular or
hyper-singular integrals and is also able to efficiently solve the biharmonic equation with a
non-homogeneous source.

In the derivation of BIE for the biharmonic equation, the current approach assumes the
auxiliary function v, which represents �u, as the sum of a volume integral and a double
layer potential and treats the density of the double layer potential as the unknown of the
scalar BIE. Alternatively, one may assume the auxiliary function v as the sum of a volume
integral and a single layer potential and treats the density of the single layer potential as
the unknown. Besides, the current BIE is derived based on the discontinuity property of the
double layer potential. One may get a different BIE based on the continuity property of the
normal derivative of the double layer potential. It is worthwhile to make further studies on
performance of the different formulations based on different BIEs.

The BIEs by the KFBI method for the second-order elliptic PDEs in the previous studies
[81,85] are all the Fredholm boundary integral equations of the second kind. The correspond-
ing discrete equations arewell-conditioned as long as themesh parameter is sufficiently small.
When the BIEs are solved by an iterative method, the number of iterations is essentially inde-
pendent of the size of the underlying Cartesian grid and the number of unknowns. The BIEs
by the method for the biharmonic equation are not second kind Fredholm equations. In this
work, the discrete linear system is solved by theGMRESmethod. TheGMRES iteration needs
preconditioning to reduce the number of iterations. Although the existing iteration converges
generally within an acceptable number of iterations, we expect a faster convergence rate.
Common preconditioners for the GMRES iteration in references can not be directly applied
since the coefficient matrix of the linear system is never formulated and actually unknown.
Although matrix-vector products in the method are replaced by simple equivalent interface
problems onCartesian grids, noting that matrix vector products are approximations of bound-
ary or volume integrals, one may seek a preconditioning technique along this direction by
finding an approximate integral operator.

It is straightforward to apply the method proposed in this work to solve the steady-state
Stokes equations as they can be transformed as a biharmonic equation via the vorticity stream
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function formulation. It is also possible to solve time-dependent Stokes equations and even
the Navier–Stokes equations with themethod. In particular, the biharmonic BVP in the singly
periodic irregular domain may serve as a good simulation of the two dimensional incom-
pressible channel flow. This model can be further extended to a doubly periodic situation in
three space dimensions.
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