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a b s t r a c t

In this paper, we generalize the direct method of lines for elliptic problems in star-
shaped domains. We assume that the boundary of the star-shaped domain is a closed
Lipschitz curve that can be parameterized by the angular variable, so that an appropriate
transformation of coordinates can be introduced. Then the elliptic problem is reduced
to a variational–differential problem on a semi-infinite strip in the new coordinates. We
discretize the reduced problem with respect to the angular variable and obtain a semi-
discrete approximation. Then a direct method is adopted to solve the semi-discrete prob-
lem analytically. Finally, the optimal error estimate of the semi-discrete approximation is
given and several numerical examples are presented to show that our method is feasible
and effective for a wide range of elliptic problems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Elliptic problems with some singularities arise in many fields of scientific researches and engineering applications. For
instance, the static problem of heat conduction in media with interfaces or elasticity problems in composite materials
would lead to an elliptic equation with discontinuous coefficients. If corners, especially cracks, are found in the media,
such problems would be modeled as elliptic problems in domains with corners/cracks. Furthermore, problems like fluid
flows around obstacles may give rise to the elliptic boundary value problem in unbounded domains. Many mathematicians
have devoted their efforts to these kinds of problems. Kellogg and Babuska studied elliptic problems with interfaces and
singularities in [1–4]. Elliptic problems in domains with corners/cracks and unbounded domains have been studied in [5–8].
It can be seen from these results that it is not easy to obtain the numerical solutions of such problems due to the singular
structures and unboundedness of the domain.

A conventional approach to elliptic problems is the finite element method, in which the domain is divided into a finite
number of elements. And on each element, the solution is approximated by smooth functions, e.g., polynomials. Thus if
singularities appear, it would require a large number of computations to capture the singularities of the solution since the
bases are smooth. Moreover, when considering problems in unbounded domains, an artificial boundary is often introduced
before applying the finite element method. Many different techniques have been developed in recent years. For elliptic
problems with singularities, there are methods such as mesh refinement given in [9,10]; infinite element method applied
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Fig. 1. Star shaped domain.

in [11,12]; the method of auxiliary mapping introduced in [13–15]; FEM with the use of singular functions discussed
in [16]; the reproducing polynomial particle method presented in [17]; the multiscale finite element proposed in [18];
the discontinuous Galerkin method shown in [19]; the energy-corrected FEM described in [20]; the method based on
integral equations stated in [21]; the immersed interface method illustrated in [22,23]; the immersed finite elements
and the immersed finite volume element method used in [24,25], etc. To design artificial boundaries for problems in
unbounded domains, several methods are adopted, e.g. absorbing boundaries and accurate radiation boundary conditions
for the wave equation [26,27]; the exact boundary condition and its approximation for Laplace equation, the linear elastic
system [28,29] and quasilinear elliptic equations [30]; the exact boundary condition at an artificial boundary for PDEs in an
infinite cylinder [31,32] and so on. In general, the abovemethods solve the problemmore efficiently, but there are still some
limitations. For example, the method of auxiliary mapping requires a prior knowledge of the structure of the singularity at
the singular point for a given problem.

Among all, the directmethod of lines, which is a development of themethod of lines [33,34], has been successfully applied
to elliptic problems with singularities [35,36] and on unbounded domains [37,38]. The main idea of the direct method of
lines is to introduce an appropriate transformation of coordinates, through which one can easily obtain a semi-discrete
approximation to the original problem. Moreover, the semi-approximation can be solved by a direct method. This method
requires no prior knowledge of the structure of the singularity at the singular point for a given problem. However, it has only
been developed for polygonal domains.

In this paper, we want to develop the direct method of lines for elliptic problems in the 2-dimensional star-shaped
domain. We assume that the boundary is a closed Lipschitz curve that can be parameterized as a piecewise smooth function
of the angular variable. Then we reduce the original elliptic problem to a variational–differential problem by introducing a
transformation of coordinates. Thewell-posedness of this variational–differential problem is discussed. Andwe approximate
the reduced problem by discretizing it w.r.t. one variable and solve the semi-discrete problem accurately w.r.t. the other
variable. An optimal error estimate can be derived for this method as well.

This paper will be arranged as follows: in Section 2, the idea of the transformation of coordinates is introduced via an
elliptic interface problem. In Section 3, the numerical treatment to the reduced variational–differential problem is stated
and we present the optimal error estimate of our method. Some numerical examples are given to show the feasibility and
efficiency of this method in Section 4. Finally, we give a conclusion in Section 5.

2. An equivalent variational–differential formulation of an elliptic problem

In this section, wewould introduce the variational–differential formulation induced by the transformation of coordinates
for an elliptic interface problem in a star-shaped domain in both isotropic and anisotropic cases. The idea is similar when
dealing with the problems in corner domains and unbounded domains.

2.1. Isotropic case

Let Ω be a domain with the boundary Γ in the x–y plane, where Γ is a closed Lipschitz curve which is star-shaped with
respect to the origin. Without loss of generality, we assume that all interfaces meet at the origin. Suppose that Ω is divided
into several subdomains Ω1, Ω2, . . . , ΩJ and that Ωk−1

⋂
Ωk is the straight line interface Lk = {(r, θ )|θ = θk, 0 ≤ r ≤ rk},

where Ω0 = ΩJ and θ1 = 0 (see Fig. 1).
Let us consider the following interface problem:

−∇ · (P∇u) = 0, in Ω, (θ ̸= θj),
u|Γ = f (θ ),
u(r, θj − 0) = u(r, θj + 0), 0 ≤ r ≤ rj,
P(θj − 0)uθ (r, θj − 0) = P(θj + 0)uθ (r, θj + 0), 0 < r < rj,

(2.1)

where j = 1, 2, . . . , J and P is a scalar piecewise constant function onΩ in the isotropic case, which takes a positive constant
value Pj in each Ωj.
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It is straightforward to check that problem (2.1) has a unique weak solution u ∈ H1
f (Ω) for given f ∈ H1/2(Γ ) with

H1
f (Ω) =

{
v ∈ H1(Ω)

⏐⏐⏐v|Γ = f
}
, i.e., u ∈ H1

f (Ω), satisfies∫∫
Ω

P∇u · ∇vdxdy = 0, ∀v ∈ H1
0 (Ω). (2.2)

Suppose that Γ can be parameterized as a (piecewise) smooth function of the angular variable, r̄ = r̄(φ), 0 ≤ φ ≤ 2π ,
such that r̄(0) = r̄(2π ) and r̄(φ) ≥ r0 > 0, ∀φ ∈ [0, 2π ]. We introduce the following transformation of coordinates on Ω ,

(x, y) = eρ(r̄(φ) cos(φ), r̄(φ) sin(φ)), 0 ≤ φ ≤ 2π, − ∞ < ρ ≤ 0, (2.3)

which we call the curvilinear coordinate system.
We proceed to derive the gradient and divergence operator in the curvilinear coordinates. We denote the gradient in the

Cartesian coordinates by ∇1 = ( ∂
∂x ,

∂
∂y )

T and the differentiation operator in the curvilinear coordinates by ∇2 = ( ∂
∂ρ

, ∂
∂φ

)T .
Furthermore, we set e⃗1(ρ, φ) = ∂ρ(x(ρ, φ), y(ρ, φ))T , e⃗2(ρ, φ) = ∂φ(x(ρ, φ), y(ρ, φ))T and E = (e⃗1, e⃗2)T . Then by the chain
rule, we have

∇2 = E∇1, (2.4)

which means

∇1 = E−1
∇2. (2.5)

Then for the divergence operator, we have to note that for a vector function v⃗ = (v1(ρ, φ), v2(ρ, φ))T ,

∇1 · v⃗ = ∇2 · (E−T v⃗) − (∇2 · E−T )v⃗. (2.6)

After simple computations, we obtain

∇1 · v⃗ = (∂ρ + 2, ∂φ + 2r̄ ′(φ)/r̄(φ))E−T v⃗. (2.7)

Thus in the curvilinear coordinates, the Laplace operator can be expressed as

1u = ∇1 · (∇1u) = (∂ρ + 2, ∂φ + 2r̄ ′/r̄)(EET )−1
∇2u, (2.8)

where u = u(ρ, φ) is a scalar function. Then if we introduce the following notations

gij(ρ, φ) = e⃗i
T

· e⃗j, i, j = 1, 2,
√
g(ρ, φ) = (det g(ρ, φ))1/2, (g ij) = (gij)−1,

we can rewrite Eq. (2.8) in a more compact form

1u =
1

√
g
∂i(

√
gg ij∂ju), (2.9)

where (∂1, ∂2) = (∂ρ, ∂φ).We further set qij(ρ, φ) =
√
gg ij(ρ, φ). It is easy to checkwith computations that qij is independent

of ρ, i.e., qij(ρ, φ) = q̂ij(φ). It follows that
√
g1u = q̂11(φ)∂2

ρu + ∂ρ(q̂12(φ)∂φu) + ∂φ(q̂12(φ)∂ρu) + ∂φ(q̂22(φ)∂φu), (2.10)

with

(
q̂11 q̂12

q̂21 q̂22

)
=

⎛⎜⎜⎝1 +

(
r̄ ′(φ)
r̄(φ)

)2

−
r̄ ′(φ)
r̄(φ)

−
r̄ ′(φ)
r̄(φ)

1

⎞⎟⎟⎠ . (2.11)

Furthermore, in the curvilinear coordinates, we obtain

dxdy =
√
gdρdφ = e2ρ r̄(φ)2dρdφ,

∂u
∂n

⏐⏐⏐
Γ

=
1

r̄2
√
r̄ ′2 + r̄2

[
(r̄ ′2

+ r̄2)
∂u
∂ρ

− r̄ ′ r̄
∂u
∂φ

]⏐⏐⏐
ρ=0

,

∂u
∂n

⏐⏐⏐
φ=θ+

i

=
1

eρ r̄2

[
−r̄ ′

∂u
∂ρ

+ r̄
∂u
∂φ

]⏐⏐⏐
φ=θ+

i

,

∂u
∂n

⏐⏐⏐
φ=θ−

i

=
1

eρ r̄2

[
−r̄ ′

∂u
∂ρ

+ r̄
∂u
∂φ

]⏐⏐⏐
φ=θ−

i

.
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Since P is a piecewise constant function, the interface problem (2.1) is reduced to the following boundary value problem
with discontinuous coefficients on the domain Ω̃ = {(ρ, φ)| − ∞ < ρ ≤ 0, 0 ≤ φ ≤ 2π} in the curvilinear coordinates:

q̂11(φ)∂2
ρu + ∂ρ(q̂12(φ)∂φu) + ∂φ(q̂12(φ)∂ρu) + ∂φ(q̂22(φ)∂φu) = 0,

−∞ < ρ < 0, θi < φ < θi+1,

u(ρ, θ−

i ) = u(ρ, θ+

i ), −∞ < ρ < 0,

Pi−1

[
−r̄ ′

∂u
∂ρ

+ r̄
∂u
∂φ

]⏐⏐⏐
φ=θ−

i

= Pi
[
−r̄ ′

∂u
∂ρ

+ r̄
∂u
∂φ

]⏐⏐⏐
φ=θ+

i

, −∞ < ρ < 0,

u
⏐⏐⏐
ρ=0

= f (φ) = u0(φ), u is bounded, as ρ → −∞,

(2.12)

where j = 1, . . . , J , θJ+1 = 2π and P0 = PJ . We introduce H1(0, 2π ) = {v(φ)|v(φ), v′(φ) ∈ L2(0, 2π )}, V = {v(φ) ∈

H1(0, 2π )|v(0) = v(2π )} and U = {u(ρ, φ)|u, ∂ρu, ∂2
ρρu ∈ V for fixed ρ < 0}. Then problem (2.12) is equivalent to the

following variational–differential problem:

Find u(ρ, φ) ∈ U such that
d2

dρ2 A2(u, v) +
d
dρ

A1(u, v) + A0(u, v) = 0, ∀v ∈ V ,

u|ρ=0 = u0(φ), u is bounded, as ρ → −∞,

(2.13)

where

A2(u, v) =

J−1∑
i=1

∫ θi+1

θi

Pi

(
1 +

(
r̄ ′(φ)
r̄(φ)

)2
)
u(ρ, φ)v(φ)dφ, (2.14)

A1(u, v) =

J−1∑
i=1

∫ θi+1

θi

Pi

[
−

r̄ ′(φ)
r̄(φ)

v(φ)∂φu(ρ, φ) +
r̄ ′(φ)
r̄(φ)

u(ρ, φ)v′(φ)
]
dφ, (2.15)

A0(u, v) = −

J−1∑
i=1

∫ θi+1

θi

Pi∂φu(ρ, φ)v′(φ)dφ. (2.16)

Remark 2.1. The BVP (2.12) in the curvilinear coordinates is equivalent to the interface problem (2.1) since the transfor-
mation of coordinates from the polar coordinates to the curvilinear coordinates, (r, θ ) = (eρ r̄(φ), φ), is a smooth bijection.
Thus problem (2.12) is well-posed with a unique solution which is 2π-periodic in φ.

Remark 2.2. We note that both H1(−∞, 0) and V are Hilbert spaces and H1(−∞, 0) × V ∼= W , where W = {w ∈

H1
[(−∞, 0) × (0, 2π )]|w(ρ, 0) = w(ρ, 2π )}. Thus the variational problem of (2.13) is equivalent to that of (2.12) due to

Fubini’s theorem, which means the variational–differential problem (2.13) is well-posed as well.

2.2. Anisotropic case

In this case, the coefficient P in the interface problem (2.1) changes from a scalar function to a second order symmetric
tensor that is positive definite. We let

P =

(
p11 p12
p21 p22

)
,

where p12 = p21 and P is a piecewise constant tensor function. We still assume that P ≡ Pj in Ωj, j = 1, . . . , J .
After similar computations to those in the isotropic case, we obtain

∇1 · (P∇1u) = (∂ρ + 2, ∂φ + 2r̄ ′/r̄)E−TPE−1
∇2u. (2.17)

If we further let (aij) = E−TPE−1, we have

∇1 · (P∇1u) =
1

√
g
∂i(

√
gaij∂ju), (2.18)

where
√
g is the same as in the isotropic case. With âij =

√
gaij, we obtain

√
g∇1 · (P∇1u) = â11(φ)∂2

ρu + ∂ρ(â12(φ)∂φu) + ∂φ(â12(φ)∂ρu) + ∂φ(â22(φ)∂φu), (2.19)
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where with R(φ) = r̄ ′(φ)/r̄(φ),

â11 = p11(R sin(φ) + cos(φ))2 − 2p12(R cos(φ) − sin(φ))(R sin(φ) + cos(φ)) + p22(R cos(φ) − sin(φ))2, (2.20)

â12 = â21 = p12(R sin(2φ) + cos(2φ)) − p11 sin(φ)(R sin(φ) + R cos(φ)) − p22 cosφ(R cos(φ) − sin(φ)), (2.21)

â22 = p11sin2(φ) − 2p12 sin(φ) cos(φ) + p22cos2(φ). (2.22)

Then in the anisotropic case, the interface problem (2.1) can be formalized in the curvilinear coordinates as

â11(φ)∂2
ρu + ∂ρ(â12(φ)∂φu) + ∂φ(â12(φ)∂ρu) + ∂φ(â22(φ)∂φu) = 0,

−∞ < ρ < 0, θi < φ < θi+1,

u(ρ, θ−

i ) = u(ρ, θ+

i ), −∞ < ρ < 0,[
Pi−1E−1

∇2u · n⃗
]⏐⏐⏐

φ=θ−

i

=

[
PiE−1

∇2u · n⃗
]⏐⏐⏐

φ=θ+

i

, −∞ < ρ < 0,

u
⏐⏐⏐
ρ=0

= f (φ) = u0(φ), u is bounded, as ρ → −∞,

(2.23)

where n⃗ = (− sin(φ), cos(φ)). Similarly, problem (2.23) can be further reduced to a variational–differential problem:

Find u(ρ, φ) ∈ U such that
d2

dρ2 A2(u, v) +
d
dρ

A1(u, v) + A0(u, v) = 0, ∀v ∈ V ,

u|ρ=0 = u0(φ), u is bounded, as ρ → −∞,

(2.24)

where

A2(u, v) =

∫ 2π

0
â11(φ)u(ρ, φ)v(φ)dφ, (2.25)

A1(u, v) =

∫ 2π

0
[â12(φ)v(φ)∂φu(ρ, φ) − â21(φ)u(ρ, φ)v′(φ)]dφ, (2.26)

A0(u, v) = −

∫ 2π

0
â22(φ)∂φu(ρ, φ)v′(φ)dφ. (2.27)

It is easy to see that the above variational–differential problem would degenerate to that in the isotropic case if P is an
isotropic tensor.

Lemma 2.1. In both isotropic and anisotropic cases,

1. Aj(u, v) (j = 0, 1, 2) are three bounded bilinear forms on V × V ;
2. A0(u, v) and A2(u, v) are symmetric while A1(u, v) is antisymmetric;
3. there exists a constant µ > 0, such that

− A0(v, v) ≥ µ|v|
2
1,(0,2π ), A2(v, v) ≥ µ∥v∥

2
0,(0,2π ), ∀v ∈ V .

3. Numerical treatments to the variational–differential problem

We focus on the numerical treatments in the isotropic case. Suppose that 0 = φ1 < φ2 < · · · < φM+1 = 2π
is a partition of the interval [0, 2π ] such that each of {θi | i = 1, 2, . . . , J} is a node of this partition, namely for θi,
there is a φj = θi. Let h = max1≤j≤M (φj+1 − φj) and Vh be a finite dimensional subspace of V . Moreover, suppose that
Uh = {uh(ρ, φ)|uh, ∂ρuh, ∂

2
ρρuh ∈ Vh for fixed ρ < 0}. Then we have the semi-approximation of problem (2.13):

Find uh(ρ, φ) ∈ Uh such that
d2

dρ2 A2(uh, vh) +
d
dρ

A1(uh, vh) + A0(uh, vh) = 0, ∀vh ∈ Vh,

uh|ρ=0 = u0,h(φ), uh is bounded, as ρ → −∞,

(3.1)

where u0,h(φ) ∈ Vh is the projection of u0(φ) onto Vh. Vh can be any finite dimensional subspace of V . If the linear elements
are used,

Vh =

{
vh(φ)

⏐⏐ vh(φ) ∈ V , vh|[φj,φj+1] ∈ P1([φj, φj+1]), j = 1, 2, . . . ,M
}

.

Assume that {Nj(φ), j = 1, 2, . . . ,M} is a basis of Vh and Nj(φi) = δij, for 1 ≤ i, j ≤ M. Let

N(φ) = [N1(φ),N2(φ), . . . ,NM (φ)]T .
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For uh ∈ Uh, let

U(ρ) ≡ [uh(ρ, φ1), . . . , uh(ρ, φM )]T

and

U0 ≡ [u0(φ1), . . . , u0(φM )]T ,

thus

uh(ρ, φ) = N(φ)T U(ρ),

u0,h(φ) = N(φ)T U0.

Then the semi-approximation (3.1) is reduced to the following boundary value problem of a second-order ODE system:

B2U ′′(ρ) + B1U ′(ρ) + B0U(ρ) = 0, −∞ < ρ < 0,
U(0) = U0, U(ρ) is bounded, as ρ → −∞,

(3.2)

where Bj(j = 0, 1, 2) are threeM × M constant coefficient matrices given by

B2 =

J−1∑
i=1

∫ θi+1

θi

Pi

(
1 +

(
r̄ ′(φ)
r̄(φ)

)2
)
N(φ)N(φ)Tdφ, (3.3)

B1 =

J−1∑
i=1

∫ θi+1

θi

−Pi
r̄ ′(φ)
r̄(φ)

[N(φ)N ′(φ)T − N ′(φ)N(φ)T ]dφ, (3.4)

B0 = −

J−1∑
i=1

∫ θi+1

θi

PiN ′(φ)N ′(φ)Tdφ. (3.5)

It is straightforward to compute Bj from the above expressions. From Lemma 2.1, we have

Lemma 3.1. B2 is a positive definite symmetric matrix, B1 is an antisymmetric matrix and B0 is a semi-negative definite symmetric
matrix.

We adopt a direct method for solving the boundary value problem of (3.2) on the interval (−∞, 0]. Let

U(ρ) = eρλξ, (3.6)

where λ is a constant and ξ ∈ CM is to be determined. Substituting (3.6) into the ODE system (3.2), we get the following
quadratic eigenvalue problem:

[λ2B2 + λB1 + B0]ξ = 0. (3.7)

If we let η = λξ , the quadratic eigenvalue problem (3.7) is further reduced to the following standard eigenvalue problem:(
0 IM

−B0 −B1

)(
ξ

η

)
= λ

(
IM 0
0 B2

)(
ξ

η

)
, (3.8)

where IM denotes the M × M identity matrix.
From Lemma 3.1 and the results in [39], we know that the eigenvalues of (3.7) or (3.8) are purely imaginary or come in

pairs (λ, −λ̄). Thus we have the following lemma:

Lemma 3.2. The eigenvalue problem (3.7) or (3.8) yields M eigenvalues with non-negative real parts while the other M
eigenvalues have non-positive real parts.

After solving the eigenvalue problem (3.8) numerically, we obtain the eigenvalues λh
j (j = 1, 2, . . . ,M) with non-negative

real parts corresponding to the eigenvectors:(
ξj
ηj

)
j = 1, 2, . . . ,M

where λh
1 = 0, ξ1 = (1, . . . , 1)T ∈ RM , η1 = (0, . . . , 0)T ∈ RM . In particular, we assume that λh

j (1 ≤ j ≤ ℓ) are real
eigenvalues, λh

j (ℓ+1 ≤ j ≤ M) are complex eigenvalues with nonzero imaginary parts such that λh
2j = λ̄h

2j−1 (
ℓ+2
2 ≤ j ≤

M
2 )

since Bj (j = 0, 1, 2) are real matrices as well. (Without loss of generality, we assume that M is an even integer.) Hence we
obtain

U(ρ) =

ℓ∑
j=1

bje
ρλhj ξj +

M/2∑
j=ℓ/2+1

[
b2j−1Re(e

ρλh2jξ2j) + b2jIm(eρλh2jξ2j)
]
, (3.9)
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satisfying the ODE system and boundary condition in (3.2). And U(ρ) is bounded when ρ → −∞ for any {bj}Mj=1. By the
boundary condition U(0) = U0, we have

U0 =

ℓ∑
j=1

bjξj +
M/2∑

j=ℓ/2+1

[
b2j−1Re(ξ2j) + b2jIm(ξ2j)

]
, (3.10)

where Re(ξ2j) and Im(ξ2j) denote the real part and imaginary part of ξ2j respectively. We introduce the following matrices:

D(ρ) =

[
eρλh1ξ1, . . . , eρλh

ℓξℓ,Re(eρλh
ℓ+2ξℓ+2), Im(eρλh

ℓ+2ξℓ+2), . . . ,Re(eρλhM ξM ), Im(eρλhM ξM )
]
,

D0 ≡ D(0) = [ξ1, . . . , ξℓ,Re(ξℓ+2), Im(ξℓ+2), . . . ,Re(ξM ), Im(ξM )] ,

B = [b1, b2. . . . , bM ].

Then (3.10) can be expressed in the matrix form as U0 = D0B. Thus we have

B = D−1
0 U0. (3.11)

Substituting (3.11) into (3.9), we obtain the solution of the second-order ODE system (3.2),

U(ρ) = D(ρ)D−1
0 U0. (3.12)

We eventually get the semi-discrete approximate solution of problem (2.1):

uh(ρ, φ) = N(φ)TD(ρ)D−1
0 U0. (3.13)

Remark 3.1. To introduce the basic idea and implementation of our generalized directmethod of lines, we state how to solve
an interface problem using ourmethod in Sections 2 and 3. However, ourmethod is not limited to solving interface problems
and can be applied to other elliptic problems as well. For example, it can be applied to the boundary value problem in corner
domains [35], where some part of domain is removed. The corresponding numerical example is Example 4.2.What ismore, it
can also be applied to the boundary value problemoutside a bounded domain [37,38]. The corresponding numerical example
is Example 4.3. To apply our method to these problems, the idea and implementation are similar. We just need some slight
modifications. And the numerical examples will show that our method is effective for these problems.

Remark 3.2. In the above process, we choose the eigenvalues with non-negative real parts when constructing U(ρ) due to
the boundary condition that U(ρ) is bounded as ρ → −∞. However, when dealing with the exterior problem [37,38], the
corresponding boundary condition would be U(ρ) is bounded as ρ → +∞ and hence we should choose the M eigenvalues
with non-positive real parts. And Lemma 3.2 ensures the feasibility of the implementation.

Remark 3.3. It is possible to generalize ourmethod to study the elliptic problemwith a variable coefficient P = P(x) in some
cases. If P is only dependent on the angular variable φ, i.e. P = P(φ), the generalization is straightforward. We can obtain
the variational–differential problem in the same form as Eq. (2.13) and the second-order ODE system in the same form as
Eq. (3.2) with a slight modification in the expressions of A2, A1, A0, B2, B1 and B0. Take B0 for example. We have

B0 = −

∫ 2π

0
P(φ)N ′(φ)N ′(φ)Tdφ

instead of

B0 = −

J−1∑
i=1

∫ θi+1

θi

PiN ′(φ)N ′(φ)Tdφ.

The modifications for other coefficients are similar. The subsequent implementation of the method remains the same. Such
a generalization is also valid for the anisotropic case.

But if P has a non-trivial dependence on ρ, i.e. P = P(ρ, φ) and ∂ρP(ρ, φ) ̸≡ 0, the generalization is not that easy. This
remains a research topic for us in the future.

Wenow turn to the error estimate of our numerical treatment.We still focus on the interface problem (2.1) in the isotropic
case. We want to estimate the error ∥u − uh∥1,Ω , where u is the exact solution of problem (2.1) and uh is the numerical
solution of the discrete variational–differential problem (3.1). Note that r̄(φ) is smooth, 2π-periodic and that r̄(φ) ≥ r0 > 0,
∀φ ∈ [0, 2π ], which indicates that q̂ij (âij respectively in the anisotropic case) are bounded for i, j = 1, 2, we have the
following theorem:

Theorem 3.3. If the linear elements are used, i.e.,

Vh =

{
vh(φ)

⏐⏐ vh(φ) ∈ V , vh|[φj,φj+1] ∈ P1([φj, φj+1]), j = 1, 2, . . . ,M
}

,
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Fig. 2. Interface problem.

then the following estimate holds

∥u − uh∥
2
1,Ω ≤ Ch2

J∑
i=1

{∫∫
Ωi

[
|∇u|2 +

∑
|α|=2

|Dαu|2
]
dxdy + ∥f ∥2

1,Γi

}
, (3.14)

where C is a positive constant independent of h and Γi = ∂Ωi
⋂

Γ .

The idea of proofs of the above theorem is similar to that in [35]. So we omit the proofs here. For detailed proofs, please
refer to Section 4 in [35].

Remark 3.4. In general, the quadratic elements or other higher-order elements can be used to construct the subspace Vh.
And similarly we would get a semi-discrete approximate solution of problem (2.1), which would possess higher accuracy.
Our numerical examples will show this fact.

4. Numerical examples

We give four numerical examples in this section.

Example 4.1. Interface problem.
Let r̄(θ ) =

1√
cos4(θ )+sin4(θ )

and Ω = {(r, θ )|0 ≤ r < r̄(θ ), 0 ≤ θ ≤ 2π}, Ω1 = {(r, θ )|0 < r < r̄(θ ), 0 < θ < π
2 },

Ω2 = {(r, θ )|0 < r < r̄(θ ), π
2 < θ < 2π} (see Fig. 2), and

P =

{
10, on Ω1,

1, on Ω2,

f = rλ2h2(θ ) + rλ3h3(θ ),

where

λ2 = 1 − a, λ3 = 1 + a, a = 2η/π, η = arcsin 0.9/2.2,

h2(θ ) =

{
cos(1 − a)θ + C3 sin(1 − a)θ, 0 ≤ θ ≤ π/2,
C1 cos(1 − a)θ + C2C3 sin(1 − a)θ, π/2 ≤ θ ≤ 2π,

h3(θ ) =

{
cos(1 + a)θ − C3 sin(1 + a)θ, 0 ≤ θ ≤ π/2,
C1 cos(1 + a)θ − C2C3 sin(1 + a)θ, π/2 ≤ θ ≤ 2π,

with

C1 = (1 + 2 sin η − 4sin2η)/(1 − 2 sin η),

C2 = (1 − 2 sin η − 4sin2η)/(1 − 2 sin η),

C3 = (1 − sin η)/cos η.

Consider the following interface problem:

−∇ · (P∇u) = 0, in Ω,

u|Γ = f |Γ ,

u(r, θ−

j ) = u(r, θ+

j ), 0 ≤ r ≤ r̄(θj),
P(θ−

j )uθ (r, θ−

j ) = P(θ+

j )uθ (r, θ+

j ), 0 < r < r̄(θj),

(4.1)

where j = 1, 2 and θ1 = 0, θ2 = π/2.
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Fig. 3. Problem with corner point.

Table 1
Results of Example 4.1. Linear elements.

M |λh
2 − λ2| |λh

3 − λ3| ∥u − uh∥0,Ω/∥u∥0,Ω ∥u − uh∥1,Ω/∥u∥1,Ω

16 1.54210e−02 2.74818e−02 3.66939e−02 1.29410e−01
32 4.97451e−03 9.22507e−03 1.13096e−02 7.52660e−02
64 1.28886e−03 2.42114e−03 2.90167e−03 3.64710e−02

128 3.25086e−04 6.12673e−04 7.29890e−04 1.80242e−02
256 8.14527e−05 1.53634e−04 1.82753e−04 8.98434e−03

Table 2
Results of Example 4.1. Quadratic elements.

M |λh
2 − λ2| |λh

3 − λ3| ∥u − uh∥0,Ω/∥u∥0,Ω ∥u − uh∥1,Ω/∥u∥1,Ω

16 1.80627e−03 4.22185e−03 6.69986e−03 4.46586e−02
32 9.08411e−05 2.36297e−04 7.70916e−04 9.95890e−03
64 5.77827e−06 1.51067e−05 9.84948e−05 2.44789e−03

128 3.63606e−07 9.50718e−07 1.24351e−05 6.11639e−04
256 2.27638e−08 5.95221e−08 1.55829e−06 1.52888e−04

Table 3
Results of Example 4.2. Linear elements.

M |λh
2 − λ2| |λh

3 − λ3| ∥u − uh∥0,Ω/∥u∥0,Ω ∥u − uh∥1,Ω/∥u∥1,Ω

16 9.88089e−02 2.17913e−01 5.86646e−02 2.23902e−01
32 2.85187e−02 6.47301e−02 1.56697e−02 9.96356e−02
64 7.54962e−03 1.68563e−02 3.98375e−03 4.82895e−02

128 1.91545e−03 4.25628e−03 1.00027e−03 2.39637e−02
256 4.80643e−04 1.06670e−03 2.53549e−04 1.19597e−02

Then u(r, θ ) = rλ2h2(θ ) + rλ3h3(θ ) is the unique solution of (4.1). (See Tables 1 and 2.)

Example 4.2. Corner singularities.
Let r̄(θ ) = 2 + cos(4θ ) and

Ω = {(r, θ )|0 < r < r̄(θ ), 0 < θ < 3π/2},

ΓN = {(r, θ )|0 ≤ r ≤ r̄(θ ), θ = 0 or θ = 3π/2},

ΓD = ∂Ω \ ΓN .

(See Fig. 3). Consider the following boundary value problem:

−1u = 0 in Ω,

u|ΓD
= f |ΓD

,
∂u
∂n

⏐⏐⏐
ΓN

= 0,
(4.2)

where f (r, θ ) = r2/3 cos( 23θ ) + r4/3 cos( 43θ ). Then u(r, θ ) = f (r, θ ) is the unique solution of (4.2). (See Tables 3 and 4.)
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Table 4
Results of Example 4.2. Quadratic elements.

M |λh
2 − λ2| |λh

3 − λ3| ∥u − uh∥0,Ω/∥u∥0,Ω ∥u − uh∥1,Ω/∥u∥1,Ω

16 2.57504e−03 7.21007e−03 4.81530e−03 9.46886e−02
32 3.08120e−04 4.21603e−04 6.32814e−04 2.43882e−02
64 1.96655e−05 2.55890e−05 8.16560e−05 6.15971e−03

128 1.23471e−06 1.58481e−06 1.03391e−05 1.54639e−03
256 7.72584e−08 9.88313e−08 1.29943e−06 3.87349e−04

Table 5
Results of Example 4.3. Linear elements.

M ∥u − uh∥0,Ω/∥u∥0,Ω ∥u − uh∥1,Ω/∥u∥1,Ω

16 1.81332e−02 6.51841e−02
32 4.63327e−03 3.08164e−02
64 1.16450e−03 1.50819e−02

128 2.91515e−04 7.49850e−03
256 7.29033e−05 3.74401e−03

Table 6
Results of Example 4.3. Quadratic elements.

M ∥u − uh∥0,Ω/∥u∥0,Ω ∥u − uh∥1,Ω/∥u∥1,Ω

16 1.32291e−03 9.30685e−03
32 1.69012e−04 2.26967e−03
64 2.13271e−05 5.64701e−04

128 2.67247e−06 1.41004e−04
256 3.34266e−07 3.52402e−05

Fig. 4. Exterior problem.

Example 4.3. Exterior problem.
Let r̄(θ ) = 2 + cos3(θ ) and Ω = {(r, θ )|r > r̄(θ ), 0 ≤ θ ≤ 2π} (see Fig. 4). Consider the following exterior problem:

−1u = 0 in Ω,

u|Γ = f |Γ ,

u is bounded as r → +∞,
(4.3)

where f (r, θ ) =
1
2
r2+r sin(θ )+1/4
r2−r sin(θ )+1/4

. It is straightforward to check that u(r, θ ) = f (r, θ ) is the unique solution of (4.3). (See
Tables 5 and 6.)

Example 4.4. Anisotropic case.
Let r̄(θ ) =

√
3
2 + sin(5θ ) and Ω = {(r, θ )|0 ≤ r < r̄(θ ), 0 ≤ θ ≤ 2π} (see Fig. 5),

P =

(
2 1
1 1

)
.
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Fig. 5. Anisotropic problem.

Table 7
Results of Example 4.4. Linear elements.

M ∥u − uh∥0,Ω/∥u∥0,Ω ∥u − uh∥1,Ω/∥u∥1,Ω

128 3.81037e−03 4.13534e−02
256 9.94178e−04 2.05363e−02
512 2.57196e−04 1.02471e−02

1024 6.53754e−05 5.12011e−03

Table 8
Results of Example 4.4. Quadratic elements.

M ∥u − uh∥0,Ω/∥u∥0,Ω ∥u − uh∥1,Ω/∥u∥1,Ω

128 6.25065e−05 1.71809e−03
256 7.80882e−06 4.04984e−04
512 9.76104e−07 1.01210e−04

1024 1.27413e−07 2.53076e−05

Consider the following problem:

−∇ · (P∇u) = 0 in Ω,

u|Γ = f |Γ ,
(4.4)

where f (r, θ ) = r2(cos(2θ ) − sin(θ ) cos(θ )). Then u(r, θ ) = f (r, θ ) is the unique solution of (4.4) (see Tables 7 and 8).

All the results show that ourmethod has the first-order convergence rate for the linear elements and second-order for the
quadratic elements w.r.t. the error in H1-norm and the convergence rate is one order higher when considering the error in
L2-norm and the error of eigenvalues. These show that ourmethod is feasible for a variety of elliptic problems in star-shaped
domains.

5. Conclusion

In this paper, we generalize the direct method of lines for elliptic problems in star-shaped domains. We assume that
the boundary of the domain is a closed curve that can be parameterized as a (piecewise) smooth function of the angular
variable, which enables us to introduce an appropriate transformation of coordinates. Then the elliptic problem is reduced
to a variational–differential problem, the well-posedness of which has been discussed. This variational–differential problem
is only discretized w.r.t. the angular variable so that we obtain a semi-approximation. A direct method is introduced to solve
it. We show that some good properties of the semi-approximation ensure that we can handle both interior and exterior
problems and our method has an optimal error estimate. Finally, numerical results show that our method is feasible and
effective for a wide range of elliptic problems.
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