Study Guide for Chap 16

1. Section 16.1: skip the definitions of first moments, center of mass and moments of inertia.

Section 16.2: skip the definitions of work, circulation, flow and flux.
All exam problems will be expressed in explicit mathematical symbols.
2. Section 16.1, 16.2:

Study the meanings of

$$
\begin{gathered}
\int_{C} f(x, y, z) d s \\
\int_{C} \boldsymbol{F}(x, y, z) \cdot \boldsymbol{T} d s=\int_{C} \boldsymbol{F}(x, y, z) \cdot d \boldsymbol{r}=\int_{C} M(x, y, z) d x+N(x, y, z) d y+P(x, y, z) d z, \\
\int_{C} \boldsymbol{F}(x, y) \cdot \boldsymbol{n} d s=\oint_{C} M(x, y) d y-N(x, y) d x
\end{gathered}
$$

and how to calculate them using a properly chosen parametrization of C : $\boldsymbol{r}(t), t_{0} \leq t \leq t_{1}$.
A few points to think over:
Which of them is (are) independent of the orientation of C ? Which of them depend(s) on the orientation of C ?

How do you choose the parametrization $\boldsymbol{r}(t)$ so that the direction of \boldsymbol{T} comply with the orientation of C ?

How is the outward normal \boldsymbol{n} related to \boldsymbol{T} if the parametrization of C is increasing in the counter-clockwise direction?

3. Section 16.3:

Study and memorize the definitions of 'path independent', 'conservative' (p938) and 'potential function' (p939).

Study the proof of Theorem 1:'Fundamental Theorem of Line Integrals' (p940).
Study the definition of 'simply connected' (bottom of p939 and the pictures in p940).
Study the proof of Theorem 2: 'Conservative Fields are Gradient Fields' (p941).
Regarding the two theorems on equivalent characterization of conservative fields, Theorem 3: 'Loop Property' (p942) and 'Component test' (p943), which of them requires the domain to be simply connected? If the domain is not simply connected (roughly speaking, it has
a hole), which of the implications ' \Longleftarrow ', ' \Longrightarrow ' remains valid? which one may probably be false? Is Example 5 a counter example of which case?
For given functions $M(x, y, z), N(x, y, z), P(x, y, z)$ satisfying the component test, how does one find the potential function (if it exists) by way of direct integration (example 3)?
4. Section 16.4:

Study and memorize definitions of divergence and curl. It is easier to start with

$$
\operatorname{div} \boldsymbol{F}(x, y, z)=\nabla \cdot \boldsymbol{F}(x, y, z), \quad \text { and } \quad \operatorname{curl} \boldsymbol{F}(x, y, z)=\nabla \times \boldsymbol{F}(x, y, z),
$$

then reduce them to

$$
\operatorname{div} \boldsymbol{F}(x, y) \quad \text { and } \quad \operatorname{curl} \boldsymbol{F}(x, y, 0) \cdot \boldsymbol{k} .
$$

Study and memorize Green's Theorem both in normal form (Theorem 4, p954) and in tangential form (Theorem 5, p955)
Is Theorem 5 applicable to Example 3 of section 16.3? Which part went wrong?
5. Section 16.5, 16.6:

Study how to calculate $\iint_{S} G(x, y, z) d \sigma$ when the surface S is given by the parametrization

$$
\boldsymbol{r}(u, v)=f(u, v) \boldsymbol{i}+g(u, v) \boldsymbol{j}+h(u, v) \boldsymbol{k}, \quad a \leq u \leq b, \quad c \leq v \leq d .
$$

Study how to calculate $\iint_{S} G(x, y, z) d \sigma$ when the surface S is given by a graph

$$
x=f(y, z), \quad(y, z) \in R,
$$

or a graph

$$
y=g(x, z), \quad(x, z) \in R,
$$

or a graph

$$
z=h(x, y), \quad(x, y) \in R .
$$

