Homework Assignment for Week 11

1. Section 14.7: Problems 31, 35, 43, 44.

Hint: You can use the method of gradient analysis introduced in 190430's class. That is, plot the gradient vector ∇f near a critical point to determine whether the critical point is a local minimum, local maximum or neither.
2. Section 14.8: Problems 1, 23, 27, 33, 35.
3. Section 14.9: Problems 7, 9, 10, 11.

Hint: An alternative method for problem 10, 11: try Taylor's formula for $\frac{1}{1-z}$ with appropriate choice of z. For problem 11: read example 1 in page 840 .
4. Section 14.9:

Taylor's formula for functions of 2 variables can be summarized as

$$
\begin{aligned}
& f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)=f\left(x_{0}, y_{0}\right)+\sum_{k=1}^{n} \frac{1}{k!}\left(\Delta x \partial_{x}+\Delta y \partial_{y}\right)^{k} f\left(x_{0}, y_{0}\right) \\
& +\frac{1}{(n+1)!}\left(\Delta x \partial_{x}+\Delta y \partial_{y}\right)^{n+1} f\left(x_{0}+c \Delta x, y_{0}+c \Delta y\right), \quad 0<c<1
\end{aligned}
$$

(Note: the textbook uses the notations a, b, h, k in place of $x_{0}, y_{0}, \Delta x, \Delta y$). Derive a similar formula for functions of 3 variables. Then use it to derive the error estimate $|E|<\cdots$ in page 816 (section 14.6).
5. Section 14.9:

Use Taylor's formula for 2 variables to derive the formula $\Delta f=\Delta_{1}+\Delta_{2}+\Delta_{3}$ on page 5 of mse19s_190425.pdf.

