Homework Assignment for Week 09

1. Section 14.4: Problems 29, 31, 43, 51.
2. Suppose that $F(x, y, z)=0$ can implicitly define $x=f(y, z)$, or $y=g(z, x)$, or $z=$ $h(x, y)$ near some point $\left(x_{0}, y_{0}, z_{0}\right)$ with $F\left(x_{0}, y_{0}, z_{0}\right)=0$. (for example, $F(x, y, z)=$ $x+2 y+3 z-4$ can $)$. Show that, at any such point $\left(x_{0}, y_{0}, z_{0}\right)$,

$$
\frac{\partial f}{\partial y} \frac{\partial g}{\partial z} \frac{\partial h}{\partial x}=\frac{\partial f}{\partial z} \frac{\partial g}{\partial x} \frac{\partial h}{\partial y}=-1
$$

3. Section 14.5: Problems 9, 15, 19, 25, 27, 29, 35, 36, 40 (See page 807).

Note: in problem 15, "direction of \mathbf{u} " refers to a unit vector.
4. Let $f(x, y)=x^{2} y /\left(x^{2}+y^{2}\right)$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$.
(a) Is f continuous at $(0,0)$?
(b) Do f_{x} and f_{y} exist at $(0,0)$?
(c) Are f_{x} and f_{y} continuous at $(0,0)$?
(d) Evaluate $D f_{(\cos \theta, \sin \theta)}(0,0)$, i.e. the directional derivative of f at $\left(x_{0}, y_{0}\right)=(0,0)$ in the direction $(\cos \theta, \sin \theta)$, if it exists.
(e) Is f differentiable at $(0,0)$?

