Calculus II, Spring 2019 (http://www.math.nthu.edu.tw/~wangwc/)

Homework Assignment for Week 09

- 1. Section 14.4: Problems 29, 31, 43, 51.
- 2. Suppose that F(x, y, z) = 0 can implicitly define x = f(y, z), or y = g(z, x), or z = h(x, y) near some point (x_0, y_0, z_0) with $F(x_0, y_0, z_0) = 0$. (for example, F(x, y, z) = x + 2y + 3z 4 can). Show that, at any such point (x_0, y_0, z_0) ,

$$\frac{\partial f}{\partial y}\frac{\partial g}{\partial z}\frac{\partial h}{\partial x} = \frac{\partial f}{\partial z}\frac{\partial g}{\partial x}\frac{\partial h}{\partial y} = -1$$

- Section 14.5: Problems 9, 15, 19, 25, 27, 29, 35, 36, 40 (See page 807).
 Note: in problem 15, "direction of u" refers to a unit vector.
- 4. Let $f(x,y) = x^2 y/(x^2 + y^2)$ for $(x,y) \neq (0,0)$ and f(0,0) = 0.
 - (a) Is f continuous at (0,0)?
 - (b) Do f_x and f_y exist at (0,0)?
 - (c) Are f_x and f_y continuous at (0,0)?
 - (d) Evaluate $Df_{(\cos\theta,\sin\theta)}(0,0)$, i.e. the directional derivative of f at $(x_0, y_0) = (0,0)$ in the direction $(\cos\theta, \sin\theta)$, if it exists.
 - (e) Is f differentiable at (0,0)?