Homework Assignment for Week 08

1. Section 14.2: Problems 43, 48, 51, 57, 67.
2. Section 14.3: Problems 19, 21, 27, 51, 60, 65, 70, 81, 91.
3. Show that if $g(x, y)=\varepsilon_{1} \cdot\left(x-x_{0}\right)+\varepsilon_{2} \cdot\left(y-y_{0}\right)$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ then $g(x, y)=\varepsilon$. $\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}$ and vice versa (the converse). Here $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon\right)=(0,0,0)$.
Remark: A brief version of the above statement reads:
Show that $o(1) \cdot \Delta x+o(1) \cdot \Delta y=o(1) \cdot \sqrt{\Delta x^{2}+\Delta y^{2}}$ where the $o(1)$'s refer to $2 D$ limits as $(\Delta x, \Delta y) \rightarrow(0,0)$.
Hint: $\sqrt{\Delta x^{2}+\Delta y^{2}}=\frac{\Delta x}{\sqrt{\Delta x^{2}+\Delta y^{2}}} \Delta x+\frac{\Delta y}{\sqrt{\Delta x^{2}+\Delta y^{2}}} \Delta y$
4. Section 14.4: Problems 1, 7, 10, 21, 24.

Remark: Quiz on April 18 covers homework 07 and 08.

