## Homework Assignment for Chapter 16

1. Section 16.1: Problems 15, 23, 25, 29.
2. Section 16.2: Problems 19, 23, 25, 27, 29, 35, 47.

See equation (5), (6) for definition of flow, circulation and flux.
3. Section 16.3: Problems 1, 3, 5, 9, 11, 19, 21, 26, 29, 33.
4. Let $\boldsymbol{F}=\frac{x}{\sqrt{x^{2}+y^{2}}} \boldsymbol{i}+\frac{y}{\sqrt{x^{2}+y^{2}}} \boldsymbol{j}+0 \boldsymbol{k}$ and $\boldsymbol{G}=\frac{-y}{x^{2}+y^{2}} \boldsymbol{i}+\frac{x}{x^{2}+y^{2}} \boldsymbol{j}+0 \boldsymbol{k}$.
(a) Show that both $\boldsymbol{F}$ and $\boldsymbol{G}$ satisfy the component test.
(b) The natural domain for both $\boldsymbol{F}$ and $\boldsymbol{G}$ is $\left\{(x, y, z), x^{2}+y^{2} \neq 0\right\}$ (that is where $\boldsymbol{F}$ and $\boldsymbol{G}$ are defined). Show that $\boldsymbol{F}$ is conservative in this domain by finding its potential function.
(c) Show that $\boldsymbol{G}$ is NOT conservative in this domain (read example 5).
(d) If given another $\boldsymbol{H}$ satisfying the component test in this domain, how do you determine whether $\boldsymbol{H}$ is conservative?
5. Let $\boldsymbol{F}=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \boldsymbol{i}++\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} \boldsymbol{j}++\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \boldsymbol{k}$. What is the natural domain for $\boldsymbol{F}$ ? Show that $\boldsymbol{F}$ satisfies the component test in this domain. Is this domain simply connected? Is $\boldsymbol{F}$ conservative in this domain?
6. Section 16.4: Problems 10, 17, 19, 23, 27, 29, 38, 39.
7. Section 16.5: Problems 5, 11, 13, 19, 31, 33, 49, 51, 55, 56.
8. Section 16.6: Problems 17, 19, 21, 25, 35, 37.
9. Section 16.7: Problems 1, 3, 6, 7, 13, 21, 26.
10. This exercise is to show that Flux, Circulation and the Curl of a vector field does not depend on the coordinate you choose.
Let $x^{\prime}, y^{\prime}$ be the coordinate axis obtained by rotating the $x, y$ axis by a fixed angle $\theta$.
(a) Express $x^{\prime}, y^{\prime}$ in terms of $x, y$ and vice versa.
(b) Express $\frac{\partial}{\partial x^{\prime}}, \frac{\partial}{\partial y^{\prime}}$ in terms of $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$ and vice versa.
(c) Let $(M, N)$ be the components of a vector filed $\boldsymbol{F}$ in the original $(x, y)$ coordinate. Express the components of $\boldsymbol{F},\left(M^{\prime}, N^{\prime}\right)$ in the new $\left(x^{\prime}, y^{\prime}\right)$ coordinates in terms of $M$ and $N$.
(d) Use chain rule to verify that

$$
\frac{\partial N^{\prime}}{\partial x^{\prime}}-\frac{\partial M^{\prime}}{\partial y^{\prime}}=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}
$$

and

$$
\frac{\partial M^{\prime}}{\partial x^{\prime}}+\frac{\partial N^{\prime}}{\partial y^{\prime}}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}
$$

(e) Express the unit vectors $\hat{x}^{\prime}, \hat{y}^{\prime}$ in terms of $\hat{x}, \hat{y}$ and vice versa.
(f) Let $x^{\prime}, y^{\prime}$ be defined as above. In 3D, we perform the change of variable from $(x, y, z)$ to $\left(x^{\prime}, y^{\prime}, z\right)$ ( $z$ coordinate is unchanged). Let $(M(x, y, z), N(x, y, z),(P(x, y, z))$ be the components of a vector field $\boldsymbol{F}$ in the original $(x, y, z)$ coordinate. Express the first two components of $\boldsymbol{F},\left(M^{\prime}, N^{\prime}\right)$ in the new $\left(x^{\prime}, y^{\prime}, z\right)$ coordinate in terms of $M$ and $N$ ( $P$ remains unchanged). The same formula also works for the normal vector $\boldsymbol{n}=\left(n_{1}, n_{2}, n_{3}\right)$ and the tangent vector $\boldsymbol{T}=\left(T_{1}, T_{2}, T_{3}\right)$
(g) Show by direct calculation that

$$
\left|\begin{array}{lll}
n_{1}^{\prime} & n_{2}^{\prime} & n_{3} \\
\partial_{x^{\prime}} & \partial_{y^{\prime}} & \partial_{z} \\
M^{\prime} & N^{\prime} & P
\end{array}\right|=\left|\begin{array}{ccc}
n_{1} & n_{2} & n_{3} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
M & N & P
\end{array}\right|
$$

and

$$
T_{1} F_{1}+T_{2} F_{2}+T_{3} F_{3}=T_{1}^{\prime} F_{1}^{\prime}+T_{2}^{\prime} F_{2}^{\prime}+T_{3} F_{3}
$$

With the identities above, one can then perform a few successive rotations to transform a triangle lying in $\mathbb{R}^{3}$ into a triangle in $x-y$ plan, therefore reducing Stoke's Theorem on a triangle to Green's Theorem in $\mathbb{R}^{2}$. The latter can be easily verified via Fundamental Theorem of Calculus.
11. Section 16.8: Problems 5, 9, 13, 17, 19, 25, 27, 29, 31.

