Homework Assignment for Chapter 14

1. Section 14.2: Problems 41, 43, 49, 51, 57, 61, 63.

Hint for problems 61, 63: Read 'Changing to Polar Coordinates' on page 781.
2. Section 14.3: Problems 19, 21, 53, 60, 65, 67, 69, 81, 91.
3. Show that if $f(x, y)=o(1) \cdot\left|x-x_{0}\right|+o(1) \cdot\left|y-y_{0}\right|$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ then $f(x, y)=$ $o(1) \cdot \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}$ and vice versa (the converse). Note that all three $o(1)$ refer to $2 D$ limits as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$.
Hint: $\sqrt{\Delta x^{2}+\Delta y^{2}}=\frac{\Delta x}{\sqrt{\Delta x^{2}+\Delta y^{2}}} \Delta x+\frac{\Delta y}{\sqrt{\Delta x^{2}+\Delta y^{2}}} \Delta y$
4. Section 14.4: Problems 7, 29, 31, 43, 51.
5. Suppose that $F(x, y, z)=0$ can implicitly define $x=f(y, z)$, or $y=g(z, x)$, or $z=$ $h(x, y)$ near some point $\left(x_{0}, y_{0}, z_{0}\right)$ with $F\left(x_{0}, y_{0}, z_{0}\right)=0$. (for example, $F(x, y, z)=$ $x+2 y+3 z-4$ can $)$. Show that, for any such point $\left(x_{0}, y_{0}, z_{0}\right)$, we have

$$
\frac{\partial f}{\partial y} \frac{\partial g}{\partial z} \frac{\partial h}{\partial x}=\frac{\partial f}{\partial z} \frac{\partial g}{\partial x} \frac{\partial h}{\partial y}=-1
$$

6. Section 14.5: Problems 9, 15, 19, 25, 27, 29, 35, 36, 40 (See page 807).
7. Let $f(x, y)=x^{2} y /\left(x^{2}+y^{2}\right)$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$.
(a) Is f continuous at $(0,0)$?
(b) Do f_{x} and f_{y} exist at $(0,0)$?
(c) Evaluate the directional derivative of f at $\left(x_{0}, y_{0}\right)=(0,0)$ in the direction $(\cos \theta, \sin \theta)$, i.e. $d f / d s_{(0,0),(\cos \theta, \sin \theta)}$, if it exists.
(d) Is f differentiable at $(0,0)$?
8. Section 14.6: Problems 1, 9, 13, 19, 25, 33, 39, 45, 59, 63, 66, 67.

Section 14.7: Problems 1, 19, 31, 35, 39, 43, 44, 49, 51, 55, 61.
Hint for problem 44: Do this problem using the gradient analysis. That is, plot ∇f near the critical point to determine whether the critical point is a local minimum, local maximum or neither.
9. Section 14.8: Problems 1, 23, 27, 33, 35.
10. Section 14.9: Problems 7, 9, 11.
11. Taylor's formula for functions of 2 variables can be summarized as

$$
\begin{aligned}
& f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)=f\left(x_{0}, y_{0}\right)+\sum_{k=1}^{n} \frac{1}{k!}\left(\Delta x \partial_{x}+\Delta y \partial_{y}\right)^{k} f\left(x_{0}, y_{0}\right) \\
& +\frac{1}{(n+1)!}\left(\Delta x \partial_{x}+\Delta y \partial_{y}\right)^{n+1} f\left(x_{0}+c \Delta x, y_{0}+c \Delta y\right), \quad 0<c<1
\end{aligned}
$$

Derive a similar formula for functions of 3 variables.
12. Section 14.10: Problems 3, 7, 9, 12.
13. Continue on problem 12: Give a formula for $\left(\frac{\partial u}{\partial x}\right)_{y}$ where $u=u(x, y, z, w)$ and $f(x, y, z, w)=$ $0, g(x, y, z, w)=0$.
14. Follow up on example 5 of section 14.8: Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$ and compute $\frac{d f}{d x}$ at $P_{1}=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1-\sqrt{2}\right)$, subject to the two constraints $g_{1}(x, y, z)=x^{2}+y^{2}-1=0$ and $g_{2}(x, y, z)=x+y+z-1=0$. That is, evaluate $\frac{d}{d x} f(x, y(x), z(x))$ at $x=\frac{\sqrt{2}}{2}$, where $y=y(x)$ and $z=z(x)$ are implicitly given by the constraints $g_{1}=0$ and $g_{2}=0$. Can you explain why you get $\frac{d f}{d x}=0$ there?

