Homework Assignment for Chapter 10

1. Section 10.1: Problems 53, 59, 63, 67, 69, 81, 87.
2. Section 10.1: Study Definition of the limit of a sequence on page 552. Make sure that you can write down the definition correctly.
3. Section 10.2: Problems 61, 65, 71, 75.
4. Section 10.2: Study the definition of the sum of a series on page 563 .
5. Section 10.3: Problems 27, 31, 33, 37, 53, 55.
6. Section 10.4: Problems 17, 27, 29, 31, 43, 45, 51, 61, 62.

Note in problem 62: the case $p=1, q<-1$ should be convergent, instead.
7. Section 10.5: Odd numbered problems in problem 17-43, 61, 65.
8. Section 10.6: Problems 4, 11, 25, 26, 28, 29, 30, 35, 39, 43, 49, 53.
9. Section 10.7: 7, 11, 15, 19, 23, 29, 33, 37, 47, 51, 56.
10. Section 10.7: Find a power series that converges on $(1,3)$ and diverges otherwise. Do the same for $(1,3],[1,3)$ and $[1,3]$, respectively.
11. Section 10.7: Use the power series expression of $\frac{1}{1-x}$ to find that of $\ln (1-x)$ on $|x|<1$.
12. Section 10.7: Find the first few terms of the power series representation of

$$
\frac{1-x^{2}+x^{4}-\cdots}{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots}
$$

13. Section 10.8: Problems 15, 23, 29, 35.

Remark for problem 23: We know that $f(x)=\sum_{n=0}^{3} b_{n}(x-2)^{n}$ for some b_{n} 's (for example, one can conclude this by repeated division by $(x-2)$). Nevertheless, it is enough to assume $f(x)$ can be written this form. The explicit values of b_{n} is not needed. Show that, the final answer is the same as $f(x)$.
14. Section 10.8: Let

$$
f(x)= \begin{cases}0, & x=0 \\ e^{-1 / x^{2}}, & x \neq 0\end{cases}
$$

It is known that $f^{(n)}(0)=0$ for all n. Verify this for $f^{\prime}(0)$ and $f^{\prime \prime}(0)$.
15. Section 10.9: Problems 7, 9, 17, 19, 33, 41, 42, 50(a).
16. Section 10.10: Problems 10, 27, 35, 37, 43, 46, 51, 64, 66.

