Brief answers to Midterm 2

May 16, 2016
Show all details. Problem 1-8: 12 pts each. Problem 9-10: 10 pts each. Total 116 points. (averege score $=58.2 \mathrm{pts}$)

1. True or False? Prove it if true. Give a counter example if false.

If $f(x, y)$ is differentiable at $(0,0)$, then $f(x, y)$ is continuous at $(0,0)$.
Remark: partial credits for at least writing correct definitions.
Answer. (averege score $=3.81 / 12$ pts: 31.8%)
True. (2 pts)
Definitions: see p774 and p790 (equivalent definitions also acceptable). (5 pts) proof:
Since f is differentiable at $(0,0)$, both $f_{x}(0,0)$ and $f_{y}(0,0)$ exist and

$$
f(x, y)-f(0,0)=f_{x}(0,0) x+f_{y}(0,0) y+\epsilon_{1} x+\epsilon_{2} y
$$

where $\epsilon_{1}, \epsilon_{2} \rightarrow 0$ as $(x, y) \rightarrow(0,0)$
$\Rightarrow|f(x, y)-f(0,0)|=\left|f_{x}(0,0)\right||x|+\left|f_{y}(0,0)\right||y|+\left|\epsilon_{1}\right||x|+\left|\epsilon_{2}\right||y| \rightarrow 0$ as $(x, y) \rightarrow(0,0)$.
therefore f is continuous at $(0,0)$ (5 pts).
2. Evaluate

$$
\frac{d}{d y} \int_{1}^{2+y^{2}} \frac{\cos (x y)}{x} d x
$$

Answer. (averege score $=3.25 / 12$ pts: 27.1\%)
Let $G(y, z)=\int_{1}^{z} \frac{\cos (x y)}{x} d x$. We need to compute

$$
\begin{aligned}
& \frac{d}{d y} G\left(y, 2+y^{2}\right)=G_{y}\left(y, 2+y^{2}\right)+G_{z}\left(y, 2+y^{2}\right) \cdot 2 y(8 \mathbf{p t s}) \\
& \quad=-\int_{1}^{2+y^{2}} \sin (x y) d x+\frac{\cos \left(\left(2+y^{2}\right) y\right)}{2+y^{2}} \cdot 2 y(2 \mathbf{p t s}) \\
& =\frac{1}{y}\left(\cos \left(\left(2+y^{2}\right) y\right)-\cos y\right)+\frac{\cos \left(\left(2+y^{2}\right) y\right)}{2+y^{2}} \cdot 2 y \cdot(2 \mathbf{p t s})
\end{aligned}
$$

Answer only without derivation: either 0 pts or 12 pts.
3. Find the equation of plane normal to the following curve at $(1,-1,1)$

$$
\left\{\begin{array}{l}
x^{2}+2 y^{2}+3 z^{2}=6 \\
x+y+z=1
\end{array}\right.
$$

Answer. (averege score $=8.38 / 12$ pts: 69.8%)
First compute the two gradients at $(1,-1,1)$

$$
(2 x, 4 y, 6 z)_{(1,-1,1)}=(2,-4,6)(\mathbf{2} \mathbf{p t s})
$$

and

$$
\left.(1,1,1)\right|_{(1,-1,1)}=(1,1,1) \cdot(2 \mathrm{pts})
$$

The normal vector of the plane is parallel to the outer product of these two gradients:

$$
n=\left|\begin{array}{ccc}
i & j & k \\
1 & 1 & 1 \\
1 & -2 & 3
\end{array}\right|=(5,-2,-3) \cdot(4 \mathbf{p t s})
$$

Therefore, the equation of the plane is

$$
5(x-1)-2(y+1)-3(z-1)=0 .(4 \mathbf{p t s})
$$

4. Show that, for any $a \in \mathbb{R}$, the point $\left(x_{0}, y_{0}\right)=(0,0)$ is a critical point of the function

$$
f_{a}(x, y)=(a-1)(x+y)^{2}+(a+1)(x-2 y)^{2} .
$$

For what values of a is the point $(0,0)$ a local minimum, a local maximum and a saddle point, respectively?
Answer. (averege score $=8.62 / 12$ pts: 71.8%)
Method. 1 For $a \geq 1, f_{a}(x, y)=(a-1)(x+y)^{2}+(a+1)(x-2 y)^{2}$ is a sum of two squares. And $(0,0)$ admits the minimum 0. (4 pts)
For $-1<a<1, f_{a}(x, y)=(a+1)(x-2 y)^{2}-(1-a)(x+y)^{2}$ is a difference of two squares. And $(0,0)$ is a saddle point since $f_{a}(1,-1)=9(a+1)>0$ and $f_{a}(2,1)=-9(1-a)<0$. ($4 \mathbf{p t s}$)
For $a \leq-1, f_{a}(x, y)=-\left[(1-a)(x+y)^{2}+(-1-a)(x-2 y)^{2}\right]$ is the negative of sum of two squares. And $(0,0)$ admits the maximum 0. (4 pts)
Method. 2 First compute the gradient at (0,0)
$\nabla f_{a}(0,0)=\left.(2(a-1)(x+y)+2(a+1)(x-2 y), 2(a-1)(x+y)+2(a+1)(x-2 y)(-2))\right|_{(0,0)}=(0,0)$, and thus $(0,0)$ is a critical point. ($\mathbf{3} \mathbf{p t s}$)

Now compute the second derivatives

$$
\left(f_{a}\right)_{x x}(0,0)=2(a-1)+2(a+1)=4 a
$$

Figure 1: The gradient analysis for problem 5.

$$
\left(f_{a}\right)_{y y}(0,0)=2(a-1)+8(a+1)=10 a+6=2(5 a+3),
$$

and

$$
\left(f_{a}\right)_{x y}(0,0)=2(a-1)-4(a+1)=-2(a+3)
$$

A local minimum occurs as $\left(f_{a}\right)_{x x}>0$ and $\left(f_{a}\right)_{x x}\left(f_{a}\right)_{y y}-\left(f_{a}\right)_{x y}^{2}>0$, i.e.

$$
\begin{aligned}
& a>0,8 a(5 a+3)-4(a+3)^{2}=36\left(a^{2}-1\right)>0 \\
\Leftrightarrow & a>1 .(3 \mathrm{pts})
\end{aligned}
$$

A local maximum occurs as $\left(f_{a}\right)_{x x}<0$ and $\left(f_{a}\right)_{x x}\left(f_{a}\right)_{y y}-\left(f_{a}\right)_{x y}^{2}>0$, i.e.

$$
\begin{aligned}
& a>0,8 a(5 a+3)-4(a+3)^{2}=36\left(a^{2}-1\right)>0 \\
\Leftrightarrow & a<-1 .(3 \mathbf{p t s})
\end{aligned}
$$

A saddle point occurs as $\left(f_{a}\right)_{x x}\left(f_{a}\right)_{y y}-\left(f_{a}\right)_{x y}^{2}<0$, i.e.

$$
\begin{array}{ll}
& 8 a(5 a+3)-4(a+3)^{2}=36\left(a^{2}-1\right)<0 \\
\Leftrightarrow \quad & -1<a<1 .(3 \mathbf{p t s})
\end{array}
$$

For $a=1, f_{a}(x, y)=2(x-2 y)^{2}$. And thus $(0,0)$ admits a local minimum.
For $a=-1, f_{a}(x, y)=-2(x+y)^{2}$. And this $(0,0)$ admits a local maximum.
Getting the two equalities $a= \pm 1$ correctly: (extra 2 pts).
5. Find absolute maxima and minima of $f(x, y)=x^{2}+x y+y^{2}-6 x$ on the rectangular domain $0 \leq x \leq 5,-3 \leq y \leq 0$.
Answer. (averege score $=9.18 / 12$ pts: 76.4%)

First find the gradient:

$$
\nabla f(x, y)=(2 x+y-6, x+2 y) .(2 \mathbf{p t s})
$$

Therefore one can plot the gradients as in figure 1. From the plot it is easy to see that $f(4,-2)=-12$ is the only local minimum since there is no local minimum on the boundary ($\mathbf{3} \mathbf{~ p t s}$). Therefore $f(4,-2)=-12$ is also the absolute minimum ($2 \mathbf{p t s}$).
Moreover, the local maximum consists of the three corners $(0,-3),(5,-3)$ and $(5,0)$. Upon comparing the values of f on the corners $(0,-3),(5,-3)$ and $(5,0)$ it follows that the absolute maxima is $f(0,-3)=9$ ($5 \mathbf{~ p t s}$).
6. Use the method of Lagrangian multiplier (this method only) to find the point closest to the origin on the curve of intersection of the plane $2 y+4 z=5$ and the cone $z^{2}=4 x^{2}+4 y^{2}$.
Answer. (averege score $=6.93 / 12$ pts: 57.8%)
Minimize $f(x, y, z)=x^{2}+y^{2}+z^{2}$, subject to the constraints

$$
\begin{align*}
& g_{1}(x, y, z)=2 y+4 z-5=0, \quad g_{2}(x, y, z)=4 x^{2}+4 y^{2}-z^{2}=0 .(\mathbf{3} \mathbf{p t s}) \\
& \left\{\begin{array} { l }
{ \nabla f = \lambda _ { 1 } \nabla g _ { 1 } + \lambda _ { 2 } \nabla g _ { 2 } } \\
{ g _ { 1 } (x , y , z) = 0 } \\
{ g _ { 2 } (x , y , z) = 0 . }
\end{array} \Rightarrow \left\{\begin{array}{l}
2 x=\quad \lambda_{2} 8 x \\
2 y=\lambda_{1} 2+\lambda_{2} 8 y \\
2 z=\lambda_{1} 4+\lambda_{2}(-2 z) \quad(3 \mathbf{p t s}) \\
2 y+4 z-5=0 \\
4 x^{2}+4 y^{2}-z^{2}=0 .
\end{array}\right.\right. \tag{3pts}
\end{align*}
$$

case 1:
$\lambda_{2}=1 / 4$, no solution.
case 2 :
$x=0,(y, z)=(1 / 2,1)$ or $(-5 / 6,5 / 3)$. Compare values of f on these two points: minimum occurs when $(x, y, z)=(0,1 / 2,1)$. Shortest distance $=\sqrt{5} / 2(\mathbf{6} \mathbf{p t s})$.
7. Derive Taylor's formula for $f(x, y)$, assuming all partial derivatives of any order of f are continuous. Find a quadratic approximation of $f(x, y)=\ln (2 x+y+1)$ near the origin.

Answer. (averege score $=5.01 / 12$ pts: 41.7\%)

Derivation: page 840 of the textbook ($6 \mathbf{p t s}$).
Quadratic approximation:

$$
\begin{gathered}
f_{x}(x, y)=\frac{2}{1+2 x+y}, \quad f_{y}(x, y)=\frac{1}{1+2 x+y},(1 \mathbf{p t s}) \\
f_{x x}(x, y)=\frac{-4}{(1+2 x+y)^{2}}, \quad f_{x y}(x, y)=\frac{-2}{(1+2 x+y)^{2}}, \quad f_{y y}(x, y)=\frac{-1}{(1+2 x+y)^{2}}(1 \mathbf{~} \\
Q(x, y)= \\
=0(0,0)+f_{x}(0,0) x+f_{y}(0,0) y+\frac{1}{2}\left(f_{x x}(0,0) x^{2}+2 f_{x y}(0,0) x y+f_{y y}(0,0) y^{2}\right) \\
=0+2 x+y-\frac{1}{2}\left(4 x^{2}+4 x y+y^{2}\right)(4 \mathrm{pts})
\end{gathered}
$$

8. Evaluate

$$
\int_{0}^{2} \int_{y}^{2} x^{2} \cos (x y) d x d y
$$

Answer. (averege score $=7.32 / 12$ pts: 61.0%)

$$
\begin{aligned}
\int_{0}^{2} \int_{y}^{2} x^{2} \cos (x y) d x d y & =\int_{0}^{2} \int_{0}^{x} x^{2} \cos (x y) d y d x(6 \mathbf{p t s}) \\
& =\left.\int_{0}^{2} x \sin (x y)\right|_{0} ^{x} d x \\
& =\int_{0}^{2} x \sin \left(x^{2}\right) d x(3 \mathbf{p t s}) \\
& =-\left.\frac{1}{2} \cos \left(x^{2}\right)\right|_{0} ^{2}=-\frac{1}{2}(\cos 4-1) \cdot(\mathbf{3} \mathbf{p t s})
\end{aligned}
$$

9. Find the Taylor series generated by $\sin ^{-1} x$, centered at 0 .

Hint: what is $\frac{d}{d x} \sin ^{-1} x$?
Answer. (averege score $=3.83 / 10$ pts: 38.3%)

$$
\begin{gather*}
\sin ^{-1} x=\int_{0}^{x}\left(1-t^{2}\right)^{\frac{-1}{2}} d t(2 \mathbf{p t s})= \\
=\int_{0}^{x}\left(1-\frac{1}{2}\left(-t^{2}\right)+\frac{\frac{1}{2} \cdot \frac{3}{2}}{2!}\left(-t^{2}\right)^{2}-\frac{\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2}}{3!}\left(-t^{2}\right)^{3}+\cdots++(-1)^{n} \frac{\frac{1}{2} \cdot \frac{3}{2} \cdots \frac{2 n-1}{2}}{n!}\left(-t^{2}\right)^{n}+\cdots\right) d t(5 \mathbf{p t s}) \\
=x+\frac{1}{2} \frac{x^{3}}{3}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^{7}}{7}+\cdots+\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2 n-1}{2 n} \cdot \frac{x^{2 n+1}}{2 n+1}+\cdots(\mathbf{3 p t s}) \tag{3pts}
\end{gather*}
$$

10. Evaluate $\sum_{n=0}^{\infty} \frac{x^{n}}{n+2}$ on $|x|<1$ using computational rules of power series.

Answer. (averege score $=1.98 / 10$ pts: 19.8\%)
The value is $1 / 2$ as $x=0$. ($\mathbf{2} \mathbf{p t s}$). For $x \neq 0$,

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{x^{n}}{n+2} & =x^{-2}\left(\sum_{n=0}^{\infty} \frac{x^{n+2}}{n+2}\right) \\
& =x^{-2}\left(\sum_{n=0}^{\infty} \int_{0}^{x} t^{n+1} d t\right)(\mathbf{3} \mathbf{p t s}) \\
& =x^{-2}\left(\int_{0}^{x} \sum_{n=0}^{\infty} t^{n+1} d t\right) \\
& =x^{-2}\left(\int_{0}^{x} \frac{t}{1-t} d t\right)(3 \mathbf{p t s}) \\
& =x^{-2}(-x-\ln (1-x))=-\frac{1}{x}-\frac{\ln (1-x)}{x^{2}} .(2 \mathbf{p t s})
\end{aligned}
$$

