Midterm 1

April 02, 2019

Show all details.

1. (6 pts) Give formal definition of $\lim_{n\to\infty} a_n = L$.

Answer. See page 552 of the textbook.

2. (6+8 pts) Show that $\sum_{k=1}^{\infty} k^{-2}$ converges and evaluate $\lim_{n\to\infty} \frac{\log(\sum_{k=n}^{\infty} k^{-2})}{\log n}$.

Hint: Give an estimate of the form $f(n) \leq \sum_{k=n}^{\infty} k^{-2} \leq g(n)$ and use it to find the limit.

Answer.

$$f(k) = k^{-2} \ge 0 \setminus \text{ and } \int_{1}^{\infty} \frac{1}{x^2} dx \text{ converges. } \therefore \text{ Converges. } (6\text{pts})$$

. .

$$\frac{1}{n} = \int_{n}^{\infty} \frac{1}{x^2} dx \le \sum_{k=n}^{\infty} \frac{1}{k^2} \le \int_{n-1}^{\infty} \frac{1}{x^2} dx = \frac{1}{n-1}$$

$$\Rightarrow -1 \le \frac{\log\left(\sum_{k=n}^{\infty} k^{-2}\right)}{\log n} \le \frac{-\log(n-1)}{\log n}$$

And,

$$\lim_{n \to \infty} \frac{-\log(n-1)}{\log n} = -1.$$

- \therefore the limit = -1. (8 pts)
- 3. (18 pts) Are the following series convergent? Explain.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + n} + n}$$
 (b) $\sum_{n=1}^{\infty} \frac{3^n n! n!}{(2n)!}$ (c) $\sum_{n=2}^{\infty} \frac{n}{(\ln n)^{\frac{n}{2}}}$

Answer.

- (a) Use limit comparison theorem, compare it with $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$. Convergent.
- (b) Ratio test: $\lim \frac{a_{n+1}}{a_n} = \frac{3}{4} < 1$. Convergent.
- (c) Root test: $\lim \sqrt[n]{a_n} = \lim \frac{\sqrt[n]{n}}{\sqrt{\ln n}} = \frac{1}{\infty} = 0 < 1$. Convergent.

4. (8 pts) Find $\sum_{n=1}^{\infty} nx^n$ and $\sum_{n=1}^{\infty} n^2x^n$ on |x| < 1 using computational rules for power series (multiplication, differentiation, integration, etc.). Need NOT prove your equality holds. **Answer.**

$$1 + x + x^{2} + \dots = \frac{1}{1 - x} (2 \text{ pts})$$

$$\Rightarrow x + 2x^{2} + 3x^{3} + \dots = x \left(\frac{1}{1 - x}\right)' = \frac{x}{(1 - x)^{2}} (3 \text{ pts})$$

$$\Rightarrow x + 2^{2}x^{2} + 3^{2}x^{3} + \dots = x \left(\frac{x}{(1 - x)^{2}}\right)' = \frac{x(1 + x)}{(1 - x)^{3}} (3 \text{ pts}).$$

- 5. (a) (6 pts) Show that $1 \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} \cdots + (-1)^n \frac{1}{2^n \cdot n!} + \cdots$ converges <u>absolutely</u>.
 - (b) (4+6 pts) Find the sum of the series in (a) and <u>prove your answer</u> (show the equality holds).

Answer.

(a) Ratio test:

$$\lim_{n \to \infty} \frac{\frac{1}{2^{n+1}(n+1)!}}{\frac{1}{2^n n!}} \to 0 < 1, \text{ convergent. (6 pts)}$$

(b)
$$e^{-1/2}. (4 \text{ pts})$$

$$|R_n(-\frac{1}{2})| \le \frac{e^{c_{n+1}}}{(n+1)!} \frac{1}{2^{n+1}} \to 0 \text{ where } c_{n+1} \in (-\frac{1}{2}, 0) \text{ . (6 pts)}$$

6. (8 pts) Find the Taylor series generated by $\sin^{-1} x$, centered at 0.

Answer.

$$\sin^{-1} x = \int_0^x (1 - t^2)^{\frac{-1}{2}} dt =$$

$$= \int_0^x (1 - \frac{1}{2}(-t^2) + \frac{\frac{1}{2} \cdot \frac{3}{2}}{2!}(-t^2)^2 - \frac{\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2}}{3!}(-t^2)^3 + \dots + (-1)^n \frac{\frac{1}{2} \cdot \frac{3}{2} \cdot \dots \cdot \frac{2n-1}{2}}{n!}(-t^2)^n + \dots) dt$$

$$= x + \frac{1}{2} \frac{x^3}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{5} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^7}{7} + \dots + \frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} \cdot \frac{x^{2n+1}}{2n+1} + \dots$$

7. (8 pts) Give an approximation of $\int_0^1 \sin(x^3) dx$ to within 10^{-5} . Give the formula of the approximation (need not find the numerical value) and explain why the error is less than 10^{-5} .

Answer.

$$\int_0^1 \sin(x^3) dx = \int_0^1 \sum_{n=1}^\infty (-1)^{n-1} \frac{(x^3)^{2n-1}}{(2n-1)!} dx = \sum_{n=1}^\infty (-1)^{n-1} \frac{\int_0^1 (x^3)^{2n-1} dx}{(2n-1)!}$$

(3 pts)
$$\sum_{n=1}^{\infty} (-1)^{n-1}$$
 1

$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(6n-2)(2n-1)!} = a_1 - a_2 + a_3 - a_4 + \cdots$$

Since

$$a_4 = \frac{1}{22 \cdot 7!} = \frac{1}{110880} \approx 0.9 \times 10^{-5}.$$

(2 pts) From error estimate for alternating series, the approximation $a_1 - a_2 + a_3$ will do the job with error less than $a_4 < 10^{-5}$ (3 pts).

8. (8 pts) Use any method to evaluate $\lim_{x\to 0} \frac{\frac{\sin x}{x} - \cos x}{x^2}$.

Answer.

$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \cdots$$
$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots$$

(1 pts)

answer =
$$\lim_{x \to 0} \frac{\left(1 - \frac{1}{3!}x^2 + \cdots\right) - \left(1 - \frac{1}{2!}x^2 + \cdots\right)}{x^2} = \frac{1}{3}$$

(7 pts)

9. True or False? Prove it if true, give a counter example if false.

(a) (4 pts) If
$$\sum_{n=0}^{\infty} a_n x^n$$
 converges at $x=-1$, then it converges at $x=1$.

(b) (4 pts) If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\sum_{n=1}^{\infty} na_n$ converges.

(c) (6 pts) If
$$g(x) = f(0) + \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
 on $|x| < 1$, then $f(x) = g(x)$ on $|x| < 1$.

Answer.

- (a) False (1 pts). $\sum_{n} \frac{x^{n}}{n}$ converges at x = -1, but diverges at x = 1(3 pts).
- (b) False (1 pts). $\sum_{n} \frac{(-1)^{n}}{n}$ converges, but $\sum_{n} (-1)^{n}$ diverges (3 pts).
- (c) False **(2 pts)**. Take $f(x) = e^{-1/x^2}$ for $x \neq 0$, and f(x) = 0 for x = 0. Then $f^{(n)}(0) = 0, \forall n \geq 0$ **(3 pts)**. Therefore $f(0) + \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = 0 \neq f(x)$, if $x \neq 0$ **(1 pts)**.