Brief Solution to Final Exam

Jun 13, 2019
Show all details.

1. (10 pts) Change

$$
\int_{\sqrt{2}}^{2} \int_{\sqrt{4-y^{2}}}^{y} d x d y
$$

into an equivalent polar integral. Write down the integral. Need not evaluate it.

Answer.

$x=\sqrt{4-y^{2}}$ corrsponds to $r=2$.
$y=2$ corrsponds to $r=2 \csc \theta$.
$x=y$ corrsponds to $\theta=\frac{\pi}{4}$.

$$
\text { Answer }=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{2}^{2 \csc \theta} r d r d \theta
$$

2. (10 pts) Find the volume in the first octant bounded by the three coordinate planes and the surface $z=4-x^{2}-y$.
Answer.

$$
\int_{0}^{2} \int_{0}^{4-x^{2}} \int_{0}^{4-x^{2}-z} d y d z d x
$$

3. (10 pts) Replace

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{\sqrt{2-r^{2}}} r d z d r d \theta
$$

by triple integrals in spherical coordinates in the order $d \rho d \phi d \theta$. Write down the triple integral. Need not evaluate it.
Hint: start by drawing the cross section $\{\theta=0\} \cap$ (this domain) in the $r-z$ plane. This domain is obtained by rotating the cross section around the z axis.

Answer.

$$
\int_{0}^{2 \pi}\left(\int_{0}^{\frac{\pi}{4}} \int_{0}^{\sqrt{2}} \rho^{2} \sin \phi d \rho d \phi+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\csc \phi} \rho^{2} \sin \phi d \rho d \phi\right) d \theta
$$

4. (10 pts) Let $D=\{1 \leq x \leq 2,0 \leq x y \leq 1,0 \leq z \leq 1\}$. Evaluate

$$
\iiint_{D}\left(x^{2} y+x y z\right) d V
$$

Answer.

Let $u=x, v=x y, w=z$.
Therefore $x=u, y=v / u, z=w, \quad x^{2} y+x y z=u v+v w . \quad J=\frac{\partial(x, y, z)}{\partial(u, v, v)}=\frac{1}{u}$

$$
\text { Answer }=\int_{0}^{1} \int_{0}^{1} \int_{1}^{2} \frac{u v+v w}{u} d u d v d w=\frac{1}{2}+\frac{\ln 2}{4}
$$

5. (12 pts) True or false? Give details.

If $f(x, y, z)$ has continuous first derivatives in a domain D, and $C=\{(x(t), y(t), z(t)), 0 \leq$ $t \leq 1\}$ is a smooth curve in D. Then $\int_{C} \nabla f \cdot d r$ depends only on $f,(x(0), y(0), z(0))$ and $(x(1), y(1), z(1))$.

Answer.

$$
\begin{aligned}
& \int_{C} \nabla f \cdot \mathbf{T} d s \\
= & \int_{0}^{1}\left(f_{x}(x(t), y(t), z(t)) x^{\prime}(t)+f_{y}(x(t), y(t), z(t)) y^{\prime}(t)+f_{z}(x(t), y(t), z(t)) z^{\prime}(t)\right) d t \\
= & \int_{0}^{1} \partial_{t}(f(x(t), y(t), z(t)) d t=f(x(1), y(1), z(1))-f(x(0), y(0), z(0)) .
\end{aligned}
$$

6. (24 pts) Let $R=\left\{x^{2}+y^{2}>1 / 4\right\}, F(x, y)=(2 y, x), \boldsymbol{G}(x, y)=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)$, $\boldsymbol{H}(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)$. Which one(s) of $\boldsymbol{F}, \boldsymbol{G}$ and \boldsymbol{H} is (are) conservative on R ? (That is, which one(s) of $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r} \int_{C} \boldsymbol{G} \cdot d \boldsymbol{r}$ and $\int_{C} \boldsymbol{H} \cdot d \boldsymbol{r}$ is (are) zero on every closed loop C in R?) Explain.

Answer.

F is not conservative since $\partial_{y}(2 y)=2 \neq 1=\partial_{x}(x)$
\boldsymbol{H} is not conservative since for some $r(t)=(a \cos t, a \sin t), 0 \leq t \leq 2 \pi$,

$$
\oint_{C} \boldsymbol{H} \cdot \boldsymbol{T} d s=\int_{0}^{2 \pi}\left(-\frac{\sin t}{a}, \frac{\cos t}{a}\right) \cdot(-a \sin t, a \cos t) d t=\int_{0}^{2 \pi} 1 d t=2 \pi \neq 0
$$

G is conservative. There are two methods to check it.

Method. 1 It suffices to check whether $\oint_{C} \boldsymbol{G} \cdot \boldsymbol{T} d s=0$ for any loop of the form $C=\left\{x^{2}+y^{2}=\right.$ $\left.a^{2}, 1 / 2 \leq a\right\}$ since G satisfies the component test.

$$
\partial_{y}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)=-\frac{x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\partial_{x}\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right) .
$$

Let $r(t)=(a \cos t, a \sin t), 0 \leq t \leq 2 \pi$.

$$
\oint_{C} \boldsymbol{G} \cdot \boldsymbol{T} d s=\int_{0}^{2 \pi}(\cos t, \sin t) \cdot(-a \sin t, a \cos t) d t=\int_{0}^{2 \pi} 0 d t=0 .
$$

Method. 2 Find $f=f(x, y)$ such that $G=\nabla f$.

$$
\begin{array}{ll}
& f_{x}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}} \\
\Rightarrow & f(x, y)=\sqrt{x^{2}+y^{2}}+g(y) \\
\Rightarrow & f_{y}(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}}+g^{\prime}(y)=\frac{y}{\sqrt{x^{2}+y^{2}}} \\
\Rightarrow & g(y)=C \\
\Rightarrow & f(x, y)=\sqrt{x^{2}+y^{2}}+C .
\end{array}
$$

7. Let $F(x, y)=(M(x, y), N(x, y))$ have continuous first and second derivatives everywhere in \mathbb{R}^{2} and let $R=\left\{x^{2}+y^{2}<1, x>0, y>0\right\}$.
(a) (8 pts) State Green's Theorem in both forms for F on R.
(b) (16 pts) Take $\boldsymbol{F}=(y, x)$ and verify both forms on R. That is, evaluate both line integral and double integral and check that they are the same. Do this for both forms.

Answer.

(a)

$$
\begin{aligned}
& \oint_{C} \boldsymbol{F} \cdot \mathbf{n} d s=\oint_{C} M d y-N d x=\iint_{R}\left(M_{x}+N_{y}\right) d x d y \\
& \oint_{C} \boldsymbol{F} \cdot \mathbf{T} d s=\oint_{C} M d x+N d y=\iint_{R}\left(N_{x}-M_{y}\right) d x d y
\end{aligned}
$$

where C is a piecewise smooth, simple closed curve that encloses the region R.
(b) Let $r_{1}(t)=(\cos t, \sin t), 0 \leq t \leq \frac{\pi}{2} ; r_{2}(t)=(0,1-t), 0 \leq t \leq 1 ; r_{3}(t)=(t, 0), 0 \leq t \leq 1$
. Then

$$
\begin{aligned}
\oint_{C} \boldsymbol{F} \cdot \mathbf{n} d s & =\int_{0}^{\frac{\pi}{2}}(\sin t \cos t-\cos t(-\sin t)) d t+\int_{0}^{1}((1-t) \cdot(-1)-0 \cdot 0) d t \\
& +\int_{0}^{1}(0 \cdot 0-t \cdot 1) d t \\
& =1-\frac{1}{2}-\frac{1}{2}=0=\iint_{R}(0+0) d x d y=\iint_{R}\left(M_{x}+N_{y}\right) d x d y \\
\oint_{C} \boldsymbol{F} \cdot \mathbf{T} d s & =\int_{0}^{\frac{\pi}{2}}(\sin t(-\sin t)+\cos t \cos t) d t+\int_{0}^{1}((1-t) \cdot 0+0 \cdot(-1)) d t \\
& +\int_{0}^{1}(0 \cdot 1+t \cdot 0) d t \\
& =0+0+0=\iint_{R}(1-1) d x d y=\iint_{R}\left(N_{x}-M_{y}\right) d x d y .
\end{aligned}
$$

8. (8 pts) Write down the definitions of ' $f(x, y)$ is continuous at $(0,0)^{\prime}$ and ' $f(x, y)$ is differentiable at $(0,0)^{\prime}$, respectively.
Answer. See solution for midterm 02.
9. (10 pts) Evaluate

$$
\frac{d}{d y} \int_{1}^{2+y^{2}} \frac{\cos (x y)}{x} d x
$$

Answer. See solution for midterm 02.
10. (12 pts) Find the sum of the series $1-\frac{1}{2 \cdot 1!}+\frac{1}{4 \cdot 2!}-\cdots+(-1)^{n} \frac{1}{2^{n} \cdot n!}+\cdots$ and prove that the equality holds.
Answer. See solution for midterm 01.

