Calculus II, Fall 2013

Quiz 4

May 02, 2013

Show all details.

- 1. Let z = L(x, y) be a plane. Write down (need not prove) the definition of L(x, y) is a tangent plane of z = f(x, y) at (0, 0, f(0, 0)).
- 2. Suppose that f(x, y) and all its partial derivatives of any order are all continuous. <u>DERIVE</u> Taylor's formula at (0, 0) up to second order. That is, $f(x, y) = p_2(x, y) + R_2(x, y)$, derive formula for the quadratic polynomial p_2 and the remainder term R_2 .
- 3. Use Lagrangian multipliers (and not other methods) to find extreme values of $f(x, y, z) = xy + z^2$ on $x^2 + y^2 + z^2 = 16$.
- 4. Find the equation of plane normal to the following curve at (1, 1, -1)

$$\begin{cases} x^2 + 2y^2 + 3z^2 = 6\\ x + y - z = 3 \end{cases}$$

5. Evaluate

$$\int_0^2 \int_x^2 y^2 \sin(xy) \, dy dx$$

Calculus II, Fall 2013

May 02, 2013

Show all details.

- 1. Let z = L(x, y) be a plane. Write down (need not prove) the definition of L(x, y) is a tangent plane of z = f(x, y) at (0, 0, f(0, 0))'.
- 2. Suppose that f(x, y) and all its partial derivatives of any order are all continuous. <u>DERIVE</u> Taylor's formula at (0, 0) up to second order. That is, $f(x, y) = p_2(x, y) + R_2(x, y)$, derive formula for the quadratic polynomial p_2 and the remainder term R_2 .
- 3. Use Lagrangian multipliers (and not other methods) to find extreme values of $f(x, y, z) = xy + z^2$ on $x^2 + y^2 + z^2 = 16$.
- 4. Find the equation of plane normal to the following curve at (1, 1, -1)

$$\begin{cases} x^2 + 2y^2 + 3z^2 = 6\\ x + y - z = 3 \end{cases}$$

5. Evaluate

$$\int_0^2 \int_x^2 y^2 \sin(xy) \, dy dx$$