Calculus II, Spring 2016

Quiz 5

May 26, 2016

- 1. Rewrite $\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} dz dy dx$ in the order dy dz dx and dx dy dz, respectively. Need not evaluate it.
- 2. Let D be the region bounded below by z = 0, above by $x^2 + y^2 + z^2 = 4$ and the sides by $x^2 + y^2 = 1$. Express the volume of D in terms of $dzdrd\theta$ and $d\rho d\phi d\theta$, respectively. Need not evaluate it.
- 3. Evaluate $\int \int_R \sqrt{\frac{y}{x}} + \sqrt{xy} dx dy$ where *R* is the region bounded by xy = 1, xy = 4, y = x and y = 3x in the first quadrant.
- 4. Evaluate $\int_C \frac{x^2}{y^{\frac{4}{3}}} ds$ where $x(t) = t^2$, $y(t) = t^3$, $1 \le t \le 2$
- 5. Evaluate $\int_C F \cdot T ds$ where $F = (x^2, -y)$ and C is the curve $x = y^2$ from (4, 2) to (1, -1).

Calculus II, Spring 2016

Quiz 5

May 26, 2016

- 1. Rewrite $\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} dz dy dx$ in the order dy dz dx and dx dy dz, respectively. Need not evaluate it.
- 2. Let D be the region bounded below by z = 0, above by $x^2 + y^2 + z^2 = 4$ and the sides by $x^2 + y^2 = 1$. Express the volume of D in terms of $dzdrd\theta$ and $d\rho d\phi d\theta$, respectively. Need not evaluate it.
- 3. Evaluate $\int \int_R \sqrt{\frac{y}{x}} + \sqrt{xy} dx dy$ where *R* is the region bounded by xy = 1, xy = 4, y = x and y = 3x in the first quadrant.
- 4. Evaluate $\int_C \frac{x^2}{y^{\frac{4}{3}}} ds$ where $x(t) = t^2$, $y(t) = t^3$, $1 \le t \le 2$
- 5. Evaluate $\int_C F \cdot T ds$ where $F = (x^2, -y)$ and C is the curve $x = y^2$ from (4,2) to (1,-1).