Calculus II, Spring 2016

Quiz 4

Apr 28, 2016

- 1. Find a tangent vector to the curve given by the intersection of the two surfaces xyz = 1and $x^2 + 2y^2 + 3z^2 = 6$ at the point (1, 1, 1).
- 2. Find absolute maxima and minima of $f(x, y) = x^2 + xy + y^2 6x + 2$ on the rectangular $0 \le x \le 5, -3 \le y \le 3$.
- 3. Use the method of Lagrangian multiplier (only) to find the maximum and minimum value of f(x, y, z) = x 2y + 5z on the sphere $x^2 + y^2 + z^2 = 30$.
- 4. Use Taylor's formula to find the quadratic approximation of $f(x, y) = \frac{1}{1 x y}$ near the origin.
- 5. Let U = f(P, V, T) where P, V and T are subject to the constraint PV = nRT, n, R are constants. Find $\left(\frac{\partial U}{\partial P}\right)_V$ and $\left(\frac{\partial U}{\partial T}\right)_V$

Calculus II, Spring 2016

Quiz 4

Apr 28, 2016

- 1. Find a tangent vector to the curve given by the intersection of the two surfaces xyz = 1and $x^2 + 2y^2 + 3z^2 = 6$ at the point (1, 1, 1).
- 2. Find absolute maxima and minima of $f(x, y) = x^2 + xy + y^2 6x + 2$ on the rectangular $0 \le x \le 5, -3 \le y \le 3$.
- 3. Use the method of Lagrangian multiplier (only) to find the maximum and minimum value of f(x, y, z) = x 2y + 5z on the sphere $x^2 + y^2 + z^2 = 30$.
- 4. Use Taylor's formula to find the quadratic approximation of $f(x, y) = \frac{1}{1 x y}$ near the origin.
- 5. Let U = f(P, V, T) where P, V and T are subject to the constraint PV = nRT, n, R are constants. Find $\left(\frac{\partial U}{\partial P}\right)_V$ and $\left(\frac{\partial U}{\partial T}\right)_V$