Calculus II, Spring 2016

Quiz 3

Apr 14, 2016

1. Give formal definitions of (1): $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$, and (2): The function z = f(x,y) is differentiable at (x_0, y_0) .

2. Does
$$\lim_{(x,y)\to(0,0)} \frac{x^3 - xy^2}{x^2 + y^2}$$
 exist? Explain.

- 3. Let $f(x,y) = \frac{xy^2}{x^2 + y^4}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0. Do $f_x(0,0)$ and $f_y(0,0)$ exist? Explain. Is f continuous at (0,0)? Explain.
- 4. Let $F(x) = \int_0^x \cos(x^2 t^2) dt$. Evaluate F'(0). Give details.
- 5. Let $f(x,y) = x^2 xy + 2y^2$. Find the direction \boldsymbol{u} (a unit vector) for which the directional derivative $\left(\frac{df}{ds}\right)_{\boldsymbol{u},(1,1)}$ (that is, $D_{\boldsymbol{u}}f(1,1)$), is largest.

Calculus II, Spring 2016

Quiz 3

Apr 14, 2016

- 1. Give formal definitions of (1): $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$, and (2): The function z = f(x,y) is differentiable at (x_0, y_0) .
- 2. Does $\lim_{(x,y)\to(0,0)} \frac{x^3 xy^2}{x^2 + y^2}$ exist? Explain.
- 3. Let $f(x,y) = \frac{xy^2}{x^2 + y^4}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0. Do $f_x(0,0)$ and $f_y(0,0)$ exist? Explain. Is f continuous at (0,0)? Explain.
- 4. Let $F(x) = \int_0^x \cos(x^2 t^2) dt$. Evaluate F'(0). Give details.
- 5. Let $f(x,y) = x^2 xy + 2y^2$. Find the direction \boldsymbol{u} (a unit vector) for which the directional derivative $\left(\frac{df}{ds}\right)_{\boldsymbol{u},(1,1)}$ (that is, $D_{\boldsymbol{u}}f(1,1)$), is largest.