Quiz 2

Mar 17, 2016

Show all details.

- 1. State (need not prove) the Leibnitz test for alternating series. Then give an example of a_n such that $\sum_n a_n$ converges and $\sum_n |a_n|$ diverges.
- 2. Give an example of a power series that converges on [0, 2] and diverges elsewhere. Explain. Do the same for (3, 7].
- 3. Give the power series representation (centered at a = 0) of $\frac{1}{1+x}$ and find its radius of convergence. Then use it to find the power series representation (centered at a = 0) of $\ln(1+x)$.
- 4. Suppose we know the power series representation of $\sin x$ (centered at a = 0), $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ is valid for all $x \in \mathbb{R}$. Use it to find the power series representation of $\cos x$ (centered at a = 0). Then use them to find the first few terms of Taylor series generated by $\tan x$ (centered at a = 0), upto and including the coefficient of x^5 .
- 5. True or False? Explain.

If
$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$$
 converges on $(-1,1)$, then $a_n = \frac{f^{(n)}(a)}{n!}$.

Calculus II, Spring 2016

Quiz 2

Mar 17, 2016

Show all details.

- 1. State (need not prove) the Leibnitz test for alternating series. Then give an example of a_n such that $\sum_n a_n$ converges and $\sum_n |a_n|$ diverges.
- 2. Give an example of a power series that converges on [0, 2] and diverges elsewhere. Explain. Do the same for (3, 7].
- 3. Give the power series representation (centered at a = 0) of $\frac{1}{1+x}$ and find its radius of convergence. Then use it to find the power series representation (centered at a = 0) of $\ln(1+x)$.
- 4. Suppose we know the power series representation of $\sin x$ (centered at a = 0), $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ is valid for all $x \in \mathbb{R}$. Use it to find the power series representation of $\cos x$ (centered at a = 0). Then use them to find the first few terms of Taylor series generated by $\tan x$ (centered at a = 0), upto and including the coefficient of x^5 .
- 5. True or False? Explain.

If $f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$ converges on (-1,1), then $a_n = \frac{f^{(n)}(a)}{n!}$.