3.1-40

(a) differentiable:
$$\chi \in [-1, 3] \setminus \{1, 0, 2\}$$

(b) continuous but not differentiable: $\chi = -1$

(c) heither continuous nor differentiable: $\chi = 0.2 \quad \chi = 2$

49

Suppose that $g(t)$ and $h(t)$ are defined for all values of t and $g(0) = h(0) = 0$. Com $\lim_{t \to 0} \frac{g(t)}{h(t)}$ exist? If it does exist, must it be 0 ?

Let $g(t) = 2t$, $h(t) = t$

$$= \lim_{t \to 0} \frac{g(t)}{h(t)} = 2$$

So the limit may exist and may not be 0

32-57

(a)
$$y = f(x) = x^3 - 4x + 1 \implies f(x) = 3x^2 - 4$$

$$f'(2) = 8 \implies \text{Slope of the equation perpendicular to the tangent}$$

$$\text{to the curve } : -\frac{1}{8}$$

Equation: $y = -\frac{1}{9}(x - 2) + 1 = -\frac{1}{9}x + \frac{5}{4}$

(b)

$$f'(x) = 6x \text{, solve } 6x = 0 \implies x = 0$$

Moreover. $f''(x) < 0 \quad x < 0 \quad 2 \quad f''(x) > 0 \quad x > 0$

decreasing increasing

Hence we have the smallest slope $f'(0) = -4$ at $(0, 1)$

3,7-57	(c) Solve $f(x) = 3x^2 + 8$
	$\Rightarrow 3x=12 \Rightarrow x=\pm 2$
-	$f(2)=1 \Rightarrow y=8(x-2)+1=8x-15$
	f(-1)=1 = y = 8(x+1)+1 = 8x+1
	$\frac{((2)^{-1}-)}{(2)^{-1}}=(\Lambda + 1)$
67	curve 2 < 1 Y
	f(x) is curve 1
	f(x) is curve >
	Since all the slope of the tangent
	Since all the slope of the tangent
	I'me to curve I is negative, and
	there are positive values in curve 1.
	So curve I can not be the derivative of curve 2
	Consider the slope of curve 1, we can find out that
	the slope decreasing on (1,1) and have 0 derivative
	at x=0, curve I satisfy all the phenomenon we found
	in and 7
	in curve I

szs-extral		
	$\frac{d}{dx} = \frac{d}{dx} \left(f(x) k(x) - g(x) h(x) \right)$	
	$\frac{dx}{h(x)} k(x)$	
	= f(x)k(x) + f(x)k'(x) - (g(x)h(x) + g(x)h'(x))	
	= (f(x)k(x) - g(x)h'(x)) + (f(x)k'(x) - g'(x)h(x))	
	$= \left f(x) g(x) + f(x) g'(x) \right $	
	h'(x) k(x) h(x) k'(x)	
	The other equality is similar	Per-Duet

