
Calculus II, Spring 2013 (http://www.math.nthu.edu.tw/˜wangwc/)

Homework Assignment for Chap 09

1. Section 9.1: Problems: 7, 41, 57, 59, 60, 65, 71, 72(abe).

2. Section 9.2: Problems: 14, 20, 33, 62, 63.

3. Section 9.3: Problems: 23, 24, 27, 39, 41, 47, 61, 62.

4. Section 9.4: Problems 3, 5, 7, 9, 11, 13, 15, 19, 23, 25, 28, 34, 35, 39, 40, 41, 44 (Does
it converge? Why?).

5. Section 9.5: Problems 4, 8, 7, 9, 24, 25, 33, 35, 37, 43, 45, 47.

6. We know that if
∞∑

n=1

an converges, then lim
n→∞

an = 0. How about the counter part for

integration?

Suppose that f(x) is non-negative, continuous on [0,∞) and

∫ ∞

0

f(x) dx < ∞. Is

lim
x→∞

f(x) = 0 necessarily true?

7. Is
∞∑

n=1

sin
1

n
convergent? How about

∞∑
n=1

(1− cos
1

n
)?

8. We know that the p = 1/2 series
∞∑

k=1

k
−1
2 diverges. The question here is how fast does

the partial sum grows with n, or
n∑

k=1

k
−1
2 = O(n?)? In other words, can you evaluate

lim
n→∞

log

(
n∑

k=1

k
−1
2

)
log n

if it exists?

9. Section 9.6: Problems 11, 15, 21, 23, 27, 28, 35, 39, 41, 44, 47.

10. Find a power series whose interval of convergence is [1, 3). Do the same for (1, 3), [1, 3]
and (1, 3], respectively.

11. Section 9.7: Problems 1, 3, 7, 15, 19, 25, 29, 33 (show that equality holds), 35, 47(a),
50, 57, 58.

12. Continue on problem 50. Show that f ′(0) = 0 and f ′′(0) = 0.

Remark: In fact, it can be shown that f (n)(0) = 0 for all n by induction. The calcula-
tion is lengthier, but not more difficult.
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13. Prove the following version of the Taylor’s Theorem.

(a) If f, f ′, · · · , f (n+1) are all continuous in (a − h, a + h), h > 0. Then for any
x ∈ (a− h, a + h), we have

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · · f

(n)(a)

n!
(x− a)2 + Rn(x),

where

Rn(x) =
1

n!

∫ x

a

f (n+1)(t)(x− t)ndt. (1)

(b) Show that (1) leads to

Rn(x) =
f (n+1)(c)

(n + 1)!
(x− a)n+1 (2)

for some c between a and x.

14. Find the interval of convergence for the power series

1 +
1

2
x +

1 · 3
2 · 4

x2 +
1 · 3 · 5
2 · 4 · 6

x3 + · · ·+ 1 · · · (2n− 1)

2 · · · 2n
xn + · · · .

Hint: Denote by an = 1···(2n−1)
2···2n

and define b2 = 2
3
, b3 = 2·4

3·5 , · · ·, bn = 2···(2n−2)
3···(2n−1)

.

For x = 1, the fact that bn < 1 will help.

For x = −1, compare an with bn and 2bn to conclude that an ∼ n−p. What is p?

Do the same for

1 +
1

3
x +

1 · 4
3 · 6

x2 +
1 · 4 · 7
3 · 6 · 9

x3 + · · ·+ 1 · · · (3n− 2)

3 · · · 3n
xn + · · · .

15. Section 9.8: Problems 9, 13, 28, 29, 31, 32, 33, 34(a), 35, 43.

16. Chap 9: Problems 27, 28, 29, 30, 32, 37, 47(a), 49-54(important), 71, 72.

17. Show that the Taylor series generated by (1 + x)m, m ∈ R, converges on |x| < 1. This
does not mean that the series indeed converges to (1 + x)m. Analyzing Rn(x) directly
is not quite easy (try it and youll see why). An alternative approach is through the
following steps:

(a) Verify that

(k + 1)

(
m

k + 1

)
+ k

(
m
k

)
= m

(
m
k

)
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(b) Define, for |x| < 1,

f(x) =
∞∑

k=0

(
m
k

)
xk = 1 + mx +

m(m− 1)

2!
x2m(m− 1)(m− 2)

3!
x3 + · · ·

Show that f(0) = 1 and

(1 + x)f ′(x) = mf(x), |x| < 1.

(c) Show that f(x) = (1 + x)m on |x| < 1.

18. Solve the differential equation

dy/dx = 1 + y2, y(0) = 0,

by power series expansion. That is, assume y(x) = a0 + a1x + a2x
2 + · · ·, then com-

pare the coefficients on both sides to solve for a0, a1, · · ·, successively. The differential
equation can also be integrated directly. Verify your answer by comparing the first 2
nonzero coefficients of the Taylor series expansion of the exact solution.
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