
Calculus II, Spring 2016

Midterm 1

Mar 28, 2016

Show all details.

1. (16 pts) Are the integrals

∫ 1

0

1√
x + x3

dx and

∫ ∞

1

tan(
1

x
)dx convergent? Explain.

Answer.

∵ lim
x→0

1√
x+x3

1√
x

= 1 (3 pts) and

∫ 1

0

1√
x

dx converges. (3 pts) ∴ Converges. (2 pts)

∵ lim
x→∞

tan(1/x)

1/x
= 1 (3 pts) and

∫ ∞

1

1

x
dx diverges. (3 pts) ∴ Diverges. (2 pts)

2. (6 pts) Give formal definition of lim
n→∞

an = L.

Answer.

∀ ε > 0, ∃ N ∈ N such that |an − L| < ε ∀ n ≥ N. (6 pts)

3. (8 pts) Evaluate lim
n→∞

(
n− 1

n + 1

)n

.

Answer.

lim
n→∞

(
n− 1

n + 1

)n

= lim
n→∞

(
1− 2

n + 1

)n+1
1

1− 2
n+1

(6 pts) = e−2. (2 pts)

4. (6+10 pts) Show that
∞∑

k=1

k−2 converges and evaluate∗ lim
n→∞

log
( ∑∞

k=n k−2
)

log n
. Give de-

tails.

(If the limit is p, this means that
∑∞

k=n k−2 is approximately np. Find p and prove it.)

Hint: recall the proof of one of the convergence tests.
Answer.

∵ f(k) = k−2 ≥ 0 ↘ ctu (2 pts) and

∫ ∞

1

1

x2
dx converges. (2 pts) ∴ Converges. (2 pts)

∵

1

n
=

∫ ∞

n

1

x2
dx (2 pts) ≤

∞∑
k=n

1

k2
≤ 1

n2
+

∫ ∞

n+1

1

x2
dx =

1

n2
+

1

n + 1
≤ 2

n + 1
(2 pts)

⇒ −1 (2 pts) ≤
log

( ∑∞
k=n k−2

)
log n

≤ log 2

log n
− log(n + 1)

log n
(2 pts) → −1.

∴ p = −1. (2 pts)



5. (8 pts) State (need not prove) Taylor’s Theorem (or Taylor’s formula). Assume the
function f has derivatives of all orders on R. Write down n terms approximation and
the formula of the remainder term.
Answer. If f has derivatives of all orders in an open interval I containing a, then
∀ n ∈ N, ∀ x ∈ I, ∃ c between a and x such that

f(x) = f(a)+f ′(a)(x−a)+. . .+
f (n)(a)

n!
(x−a)n (4 pts) +

f (n+1)(c)

(n + 1)!
(x−a)n+1. (4 pts)

6. (6+12 pts)

(a) Show that the series 1− 1
2·1! + 1

4·2! − · · ·+ (−1)n 1
2n·n!

+ · · · converges absolutely.

(b) Find the sum of the series in (a). Prove your answer (that is, the equality holds).

Answer.

(a)

lim
n→∞

1
2n+1(n+1)!

1
2nn!

→ 0. (6 pts)

(b)

e−1/2. (2 pts) |Rn(−1

2
)| ≤ e−c

(n + 1)!

1

2n+1
→ 0 where c ∈ (0,

1

2
) . (10 pts)

7. (8 pts) Find
∞∑

n=1

nxn and
∞∑

n=1

n2xn on |x| < 1 using computational rules of power series.

Need NOT prove your equality holds as in previous question.
Answer.

1 + x + x2 + . . . =
1

1− x
(2 pts)

⇒ x + 2x2 + 3x3 + . . . = x

(
1

1− x

)′

=
x

(1− x)2
(3 pts)

⇒ x + 22x2 + 32x3 + . . . = x

(
x

(1− x)2

)′

=
x(1 + x)

(1− x)3
(3 pts).

8. (6 pts) Find a power series that converges on [1, 5) and diverges elsewhere. Explain.
Answer. ∑

n

1

n

(
x− 3

2

)n

. (2 pts)

lim
n→∞

n

n + 1

1

2
=

1

2
⇒ R = 2. (2 pts)

For x = 1, ∑
n

(−1)n

n
converges. (1 pt)
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For x = 5, ∑
n

1

n
diverges. (1 pt)

9. (12 pts) Give an approximation of
∫ 1

2

0
sin(x2)dx to within 10−8. Give the formula of

the approximation, but need not find the numerical value. Explain why the error is
less than 10−8.
Answer.∣∣∣∣ ∫ 1

2

0

(−1)n x2(2n+1)

(2n + 1)!
dx

∣∣∣∣ (4 pts) ≤ 1

(4n + 3) · 24n+3 · (2n + 1)!
< 10−8 (4 pts).

n ≥ 3 will do (2 pts). The approximation is

2∑
k=0

(−1)k 1

(4k + 3) · 24k+3 · (2k + 1)!
(2 pts).

(error ≈ 4× 10−10)
Giving optimal n, (n = 3): (extra 2 pts).

10. (8+10+10 pts) True or False? Prove it if true, give a counter example if false.

(a) If
∑

an converges, then
∑

nan converges.

(b) ∗ If
∑

anx
n converges on |x| < 1, then

∑√
nanx

n also converges on |x| < 1.

(c) If g(x) = f(0) +
∞∑

n=1

f (n)(0)

n!
xn converges on |x| < 1, then f(x) = g(x) on |x| < 1.

Answer.

(a) False (2 pts).
∑

n
(−1)n

n
converges (3 pts), but

∑
n(−1)n diverges (3 pts).

(b) True (2 pts). Given |x| < 1. Take y with |x| < |y| < 1. Then |
√

nanx
n| ≤

|any
n| for n large enough since

√
n|x/y|n → 0 as n → ∞ (6 pts). Furthermore,∑

n |any
n| converges (2 pts).

(c) False (2 pts). Take f(x) = e−1/x2
for x 6= 0, and f(x) = 0 for x = 0 (3 pts).

Then f (n)(0) = 0, ∀ n ≥ 0 (2 pts). Therefore f(0) +
∞∑

n=1

f (n)(0)

n!
xn = 0 6= f(x),

if x 6= 0 (3 pts).
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