Brief answers to Final Exam

Jun 16, 2016

Show all details.

1. (10 pts) Replace

$$\int_0^{2\pi} \int_0^1 \int_0^{\sqrt{2-r^2}} r dz dr d\theta$$

by triple integrals in spherical coordinates in the order $d\rho d\phi d\theta$ and $d\phi d\rho d\theta$, respectively. Need not evaluate them.

Answer.

$$\int_{0}^{2\pi} \left[\int_{0}^{\frac{\pi}{4}} \int_{0}^{\sqrt{2}} \rho^{2} \sin \phi \, d\rho d\phi + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\csc \phi} \rho^{2} \sin \phi \, d\rho d\phi \right] d\theta \text{ (5 pts)}$$

$$\int_{0}^{2\pi} \left[\int_{0}^{1} \int_{0}^{\frac{\pi}{2}} \rho^{2} \sin \phi \, d\phi d\rho + \int_{1}^{\sqrt{2}} \int_{0}^{\csc^{-1} \rho} \rho^{2} \sin \phi \, d\phi d\rho \right] d\theta \text{ (5 pts)}$$

2. (15 pts) Evaluate the surface area of $S = \{z = \sqrt{x^2 + y^2}, \ 1 \le xy \le 2, \ 1 \le x/y \le 3, \ x > 0, \ y > 0\}.$

Answer.

Method.1 Let $f(x, y) = \sqrt{x^2 + y^2}$. First compute

$$f_x = \frac{x}{\sqrt{x^2 + y^2}}, \ f_y = \frac{y}{\sqrt{x^2 + y^2}}.$$
 (2 pts)

Then the surface area is

Area =
$$\iint_{R} \sqrt{f_{x}^{2} + f_{y}^{2} + 1} \, dx dy$$
 (2pts) = $\iint_{R} \sqrt{2} \, dx dy$. (1pt)

Let u = xy, $v = \frac{x}{y}$, x, y > 0 (2 pts). Then $1 \le u \le 2$, $1 \le v \le 3$ (2 pts), and the Jacobian is

$$\begin{vmatrix} \frac{\sqrt{v}}{2\sqrt{u}} & \frac{\sqrt{u}}{2\sqrt{v}} \\ \frac{1}{2\sqrt{uv}} & -\frac{1}{2}\frac{\sqrt{u}}{v\sqrt{v}} \end{vmatrix} = -\frac{1}{2v}.$$
 (2 pts)

Thus, The integral is changed into

Area =
$$\int_{1}^{2} \int_{1}^{3} \frac{\sqrt{2}}{2v} dv du$$
 (2 pts) = $\frac{\ln 3}{\sqrt{2}}$. (2 pts)

Method.2 Let $r(r, \theta) = (r \cos \theta, r \sin \theta, r), \left(\frac{2}{\sin 2\theta}\right)^{\frac{1}{2}} \le r \le \left(\frac{4}{\sin 2\theta}\right)^{\frac{1}{2}}, \cot^{-1} 3 \le \theta \le \cot^{-1} 1$ (3 pts). First compute

$$r_r(r,\theta) = (\cos\theta, \sin\theta, 1)$$
, (1 pt)
 $r_\theta(r,\theta) = (-r\sin\theta, r\cos\theta, 0)$, (1 pt)
 $|r_r(r,\theta) \times r_\theta(r,\theta)| = |(-r\cos\theta, -r\sin\theta, r)| = \sqrt{2}r$. (2 pts)

Thus, the area is

$$\int_{\cot^{-1} 3}^{\cot^{-1} 1} \int_{\left(\frac{4}{\sin 2\theta}\right)^{\frac{1}{2}}}^{\left(\frac{4}{\sin 2\theta}\right)^{\frac{1}{2}}} \sqrt{2} r \, dr d\theta \, (2 \text{ pts}) = \sqrt{2} \int_{\cot^{-1} 3}^{\cot^{-1} 1} \frac{1}{2} \left(\frac{4}{\sin 2\theta} - \frac{2}{\sin 2\theta}\right) d\theta \, (2 \text{ pts})$$

$$= \sqrt{2} \int_{\cot^{-1} 3}^{\cot^{-1} 1} \csc 2\theta \, d\theta$$

$$= -\frac{1}{\sqrt{2}} \left[\ln(1+0) - \ln(\frac{5}{3} + \frac{4}{3})\right] \, (2 \text{ pts})$$

$$= \frac{\ln 3}{\sqrt{2}}. \, (2 \text{ pts})$$

- 3. Let F(x, y) = (M(x, y), N(x, y)) have continuous first and second derivatives everywhere in \mathbb{R}^2 and let $R = \{x^2 + y^2 < 1, x > 0, y > 0\}$.
 - (a) (10 pts) State Green's Theorem in both forms for *F* on *R*.
 - (b) (16 pts) Take F = (y, x) and verify both forms on R. That is, evaluate both line integral and double integral and check that they are the same. Do this for both forms.

Answer.

(a)

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} ds = \oint_{C} M dy - N dx = \iint_{R} (M_{x} + N_{y}) dx dy \text{ (5 pts)}$$

$$\oint_{C} \mathbf{F} \cdot \mathbf{T} ds = \oint_{C} M dx + N dy = \iint_{R} (N_{x} - M_{y}) dx dy \text{ (5 pts)}$$

where C is a piecewise smooth, simple closed curve which encloses the region R

(b) Let $r_1(t) = (\cos t, \sin t)$, $0 \le t \le \frac{\pi}{2}$; $r_2(t) = (0, 1 - t)$, $0 \le t \le 1$; $r_3(t) = (t, 0)$, $0 \le t \le 1$

(4 pts). Then

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{0}^{\frac{\pi}{2}} (\sin t \cos t - \cos t(-\sin t)) \, dt + \int_{0}^{1} ((1-t) \cdot (-1) - 0 \cdot 0) \, dt
+ \int_{0}^{1} (0 \cdot 0 - t \cdot 1) \, dt
= 1 - \frac{1}{2} - \frac{1}{2} = 0 = \iint_{R} (0+0) \, dx \, dy = \iint_{R} (M_{x} + N_{y}) \, dx \, dy, \quad \text{(6 pts)}$$

$$\oint_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{0}^{\frac{\pi}{2}} (\sin t(-\sin t) + \cos t \cos t) \, dt + \int_{0}^{1} ((1-t) \cdot 0 + 0 \cdot (-1)) \, dt
+ \int_{0}^{1} (0 \cdot 1 + t \cdot 0) \, dt
= 0 + 0 + 0 = \iint_{R} (1-1) \, dx \, dy = \iint_{R} (N_{x} - M_{y}) \, dx \, dy. \quad \text{(6 pts)}$$

4. (10 pts) True or false? Give details.

If f(x, y, z) has continuous first derivatives in a domain D, and $C = \{(x(t), y(t), z(t)), 0 \le t \le 1\}$ be a smooth curve in D. Then $\int_C \nabla f \cdot T ds$ depends only on f, (x(0), y(0), z(0)) and (x(1), y(1), z(1)).

Answer. True. (2 pts)

$$\int_{C} \nabla f \cdot \mathbf{T} ds$$

$$= \int_{0}^{1} (f_{x}(x(t), y(t), z(t))x'(t) + f_{y}(x(t), y(t), z(t))y'(t) + f_{z}(x(t), y(t), z(t))z'(t)) dt \quad \textbf{(4 pts)}$$

$$= \int_{0}^{1} \partial_{t}(f(x(t), y(t), z(t)) dt = f(x(1), y(1), z(1)) - f(x(0), y(0), z(0)). \quad \textbf{(4 pts)}$$

5. (24 pts) Let
$$R = \{1/4 \le x^2 + y^2 \le 4\}$$
, $F(x, y) = (2y, x)$, $G(x, y) = (\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}})$, $H(x, y) = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2})$.

Which one(s) of F, G and H is (are) conservative on R? (That is, which one(s) of $\int_C F \cdot dr$, $\int_C G \cdot dr$ and $\int_C H \cdot dr$ is (are) zero on every closed loop C in R?) Explain.

F is not conservative (2 pts) since $\partial_y(2y) = 2 \neq 1 = \partial_x(x)$ (2 pts).

H is not conservative (2 pts) since for some $r(t) = (a \cos t, a \sin t)$, $0 \le t \le 2\pi$ (2 pts),

$$\oint_C \mathbf{H} \cdot \mathbf{T} \, ds = \int_0^{2\pi} \left(-\frac{\sin t}{a}, \frac{\cos t}{a} \right) \cdot \left(-a \sin t, a \cos t \right) dt = \int_0^{2\pi} 1 \, dt = 2\pi \neq 0.$$
 (6 pts)

G is conservative. **(2 pts)** There are two methods to check it.

Method.1 It suffices to check whether $\oint_C G \cdot T ds = 0$ for any loop of the form $C = \{x^2 + y^2 = a^2, 1/2 \le a \le 2\}$ since G satisfies the component test.

$$\partial_y \left(\frac{x}{\sqrt{x^2 + y^2}} \right) = -\frac{xy}{(x^2 + y^2)^{3/2}} = \partial_x \left(\frac{y}{\sqrt{x^2 + y^2}} \right)$$
 (2 pts).

Let $r(t) = (a \cos t, a \sin t), 0 \le t \le 2\pi$.

$$\oint_C G \cdot T \, ds = \int_0^{2\pi} (\cos t, \sin t) \cdot (-a \sin t, a \cos t) \, dt = \int_0^{2\pi} 0 \, dt = 0.$$
 (6 pts)

Method.2 Find f = f(x, y) such that $G = \nabla f$.

$$f_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$$

$$\Rightarrow f(x,y) = \sqrt{x^2 + y^2} + g(y)$$

$$\Rightarrow f_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}} + g'(y) = \frac{y}{\sqrt{x^2 + y^2}}$$

$$\Rightarrow g(y) = C$$

$$\Rightarrow f(x,y) = \sqrt{x^2 + y^2} + C. \text{ (8 pts)}$$

6. (15 pts) Let F(x, y, z) = zk and $S = \{x^2 + y^2 + z^2 = 4, x > 0, y > 0, z > 0\}$. Evaluate $\int_S \int_S \mathbf{F} \cdot \mathbf{n} \, d\sigma \text{ where } \mathbf{n} \text{ is unit normal of } S \text{ pointing away from the origin.}$

Method.1 Let
$$r(\phi, \theta) = (2 \sin \phi \cos \theta, 2 \sin \phi \sin \theta, 2 \cos \phi), 0 \le \phi, \theta \le \frac{\pi}{2}$$
 (3 pts). Then
$$r_{\phi}(\phi, \theta) = (2 \cos \phi \cos \theta, 2 \cos \phi \sin \theta, -2 \sin \phi)$$
 (1 pt)
$$r_{\theta}(\phi, \theta) = (-2 \sin \phi \sin \theta, 2 \sin \phi \cos \theta, 0)$$
 (1 pt)
$$r_{\phi} \times r_{\theta} = (4 \sin^2 \phi \cos \theta, 4 \sin^2 \phi \sin \theta, 4 \cos \phi \sin \phi).$$
 (2 pts)

Therefore,

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} (0, 0, 2\cos\phi) \cdot (4\sin^{2}\phi\cos\theta, 4\sin^{2}\phi\sin\theta, 4\cos\phi\sin\phi) \, d\phi d\theta \, \mathbf{(4 pts)}$$

$$= 8 \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \cos^{2}\phi\sin\phi \, d\phi d\theta = 4\pi \cdot \int_{0}^{1} u^{2} \, du \, \mathbf{(2 pts)} = \frac{4\pi}{3}. \, \mathbf{(2 pts)}$$

Method.2 Let $g(x, y, z) = x^2 + y^2 + z^2 = 4$. Then

$$\nabla g = (2x, 2y, 2z), \ |\nabla g \cdot p| = 2z.$$
 (7 pts)

$$\iint_{R} \mathbf{F} \cdot \mathbf{n} d\sigma = \iint_{R} \mathbf{F} \cdot \frac{\nabla g}{|\nabla g|} \frac{|\nabla g|}{|\nabla g \cdot p|} dxdy$$

$$= \iint_{R} \mathbf{F} \cdot \frac{\nabla g}{|\nabla g \cdot p|} dxdy \text{ (4 pts)}$$

$$= \iint_{R} z dxdy \text{ (2 pts)}$$

$$= \text{the volume of the sphere of radius 2 in the first octant}$$

$$= \frac{4\pi \cdot 2^{3}}{3} \cdot \frac{1}{8}$$

$$= \frac{4\pi}{3}. \text{ (2 pts)}$$

7. (10 pts) Let $f(x, y) = 2x + 3y + 4 + \left(\sqrt{x^2 + y^2}\right)^{\frac{3}{2}}$. Is f(x, y) differentiable at (0,0)? Explain.

Answer. Yes. (2 pts)

First we compute

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{2h + h^3}{h} = 2 \text{ (2 pts)}$$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{3h + h^3}{h} = 3. \text{ (2 pts)}$$

Given $(\triangle x, \triangle y)$. Then

$$f(\triangle x, \triangle y) - f(0,0) = 2\triangle x + 3\triangle y + \left(\sqrt{\triangle x^2 + \triangle y^2}\right)^{\frac{3}{2}}$$
.(2 pts)

To show
$$\left(\sqrt{\Delta x^2 + \Delta y^2}\right)^{\frac{3}{2}} = \epsilon_1 \Delta x + \epsilon_2 \Delta y$$
. (2 pts)

Method.1 Write $(\triangle x, \triangle y) = (r \cos \theta, r \sin \theta)$. Then

$$\left(\sqrt{\triangle x^2 + \triangle y^2}\right)^{\frac{3}{2}} = r^{\frac{3}{2}} = r \cdot r^{\frac{1}{2}} = r(\epsilon_1 \cos \theta + \epsilon_2 \sin \theta) = \epsilon_1 \triangle x + \epsilon_2 \triangle y$$

for some ϵ_1 , ϵ_2 which approach to zero as Δx , $\Delta y \rightarrow 0$.

Method.2

$$\left(\sqrt{\triangle x^2 + \triangle y^2}\right)^{\frac{3}{2}} = \left(\sqrt{\triangle x^2 + \triangle y^2}\right)^{\frac{1}{2}} \sqrt{\triangle x^2 + \triangle y^2} = o(1) \sqrt{\triangle x^2 + \triangle y^2} \stackrel{HW7}{=} \epsilon_1 \triangle x + \epsilon_2 \triangle y$$

for some ϵ_1 , ϵ_2 which approach to zero as Δx , $\Delta y \rightarrow 0$.

8. (10 pts) Evaluate $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$ on |x| < 1 using computational rules of power series.

Answer.

For x = 0, clearly $\sum_{n=0}^{\infty} \frac{x^n}{n+1} = 1$. For 0 < |x| < 1,

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \text{ (4 pts)}$$

$$\Rightarrow \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} = -\ln(1-x) \text{ (4 pts)}$$

$$\Rightarrow \sum_{n=0}^{\infty} \frac{x^n}{n+1} = -\frac{\ln(1-x)}{x} \text{. (2 pts)}$$