Calculus II, Spring 2016

Brief answers to Quiz 1

Mar 03, 2016

Show all details.

1. (20 pts) Give formal definition of $\lim_{n\to\infty} a_n = L$

Ans.

See page 552 of the textbook. If you did not get full credit, make sure you realize what was the mistake in your answer.

- 2. (16 pts) Is $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan t} dt$ convergent? Explain. Ans. $\therefore \lim_{t \to \pi/2-} \frac{\sqrt{\tan t}}{\sqrt{\frac{1}{2}-t}} = 1.$ (6 pts) And, $\int_0^{\pi/2} \frac{1}{\sqrt{\frac{\pi}{2}-t}} dt = \int_0^{\pi/2} \frac{1}{\sqrt{u}} du$ converges. (6 pts)
 - \therefore By Limit Comparison Test, $\int_0^{\frac{\pi}{2}} \sqrt{\tan t} \, dt$ converges. (4 pts)
- 3. (16 pts) Is $\sum_{n=1}^{\infty} (1+\frac{1}{n})^n$ convergent? Explain.

Ans.

∴
$$(1 + \frac{1}{n})^n \to e$$
 (12 pts).
∴ By Nth Term Test, $\sum_{n=1}^{\infty} (1 + \frac{1}{n})^n$ divergent (4 pts)

4. (16 pts) Is $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ convergent? Explain.

Ans.

- Let $f(x) = \frac{1}{x(\ln x)^2}$ (3 pts). Then f is positive, continuous, and decreasing on $[3, \infty)$ (3 pts). $\therefore \int_{3}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \int_{\ln 3}^{\infty} \frac{1}{u^{2}} du \text{ converges. (6 pts)}$ $\therefore \text{ By Integral Test, } \sum_{n=3}^{\infty} \frac{1}{n(\ln n)^{2}} \text{ converges (4 pts).}$
- 5. (16 pts) Is $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+1}}$ convergent? Explain. $\therefore \lim_{n\to\infty} \frac{\sqrt{n^3+1}}{\frac{1}{3}} = 1$ (6 pts). And, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges (6 pts). \therefore By Limit Comparison Test, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+1}}$ converges (4 pts).

6. (16 pts) Is
$$\sum_{n=1}^{\infty} \frac{2^n n! n!}{(2n)!}$$
 convergent? Explain.

Ans. Let $a_n = \frac{2^n n! n!}{(2n)!}$. $\therefore \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2(n+1)^2}{(2n+1)(2n+2)} = \frac{1}{2}$ (12 pts). \therefore By Ratio Test, $\sum_{n=1}^{\infty} \frac{2^n n! n!}{(2n)!}$ converges (4 pts).