Calculus I, Fall 2015

Quiz 4

Nov 26, 2015

Show all details.

1. Find $\lim_{x \to 0} (\frac{1}{x} - \frac{1}{\sin x})$. Ans:

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right) = \lim_{x \to 0} \frac{\sin x - x}{x \sin x} (\mathbf{8} \ \mathbf{pts})$$
$$= \lim_{x \to 0} \frac{\cos x - 1}{\sin x + x \cos x} (\mathbf{8} \ \mathbf{pts}) = \lim_{x \to 0} \frac{-\sin x}{2 \cos x - x \sin x} (\mathbf{4} \ \mathbf{pts}) = 0$$

2. Find the point on $y = \sqrt{x}$, $x \ge 0$ that is closest to (2,0). Explain why the answer you have is actually a global minimum.

Ans:

Let
$$D^2 = (x-2)^2 + (y-0)^2 = (x-2)^2 + x$$
 on $y = \sqrt{x}$ and $x \ge 0.(5 \text{ pts})$
Then $\frac{dD^2}{dx} = 2x - 3$, hence $x = \frac{3}{2}$ is a critical point. (5 pts)
Moreover $\frac{dD^2}{dx} < 0$ if $x < \frac{3}{2}$ and $\frac{dD^2}{dx} > 0$ if $x > \frac{3}{2}$. (5 pts)

Hence D^2 has absolute minimum at $x = \frac{3}{2}$, and $(\frac{3}{2}, \sqrt{\frac{3}{2}})$ is the point on $y = \sqrt{x}$ which is closest to (2,0).(5 pts)

3. Write down Newton's method that can be used to find $\sqrt[3]{2}$. Need not give the numerical value.

Ans:

Let $f(x) = x^3 - 2$, then the root of f(x) = 0 gives $x = \sqrt[3]{2}$. Newtons' method: Start with a reasonable x_0 , (for example $x_0 = 1$), then iterate $x_{n+1} = x_n - \frac{x_n^3 - 2}{3x_n^2}$. (10 pts)

4. Express $\int_{1}^{2} \frac{1}{1+x^2} dx$ as a limit of Riemann sum (with uniformly spaced partition and c_k of your choice). Then find the limit of the definite integral using fundamental Theorem of Calculus.

Ans:

- (1) $\lim_{n\to\infty}\sum_{k=1}^n \frac{1}{1+c_k^2} \frac{1}{n}$ (8 pts) for some $c_k \in \left[\frac{k-1}{n}, \frac{k}{n}\right]$ (2 pts).
- (2) Since $(\tan^{-1} x)' = \frac{1}{1+x^2}$ (8 pts), by FTC we can know that the definite integral is $\tan^{-1}(2) \tan^{-1}(1)$ (2 pts).
- 5. Evaluate $\frac{d}{dx} \int_{x^2}^0 \sqrt{1+t^4} dt$. **Ans**: $= -\frac{d}{dx} \int_0^{x^2} \sqrt{1+t^4} dt$ (4 pts) $= -\sqrt{1+x^8} \cdot \frac{d}{dx}(x^2)$ (12 pts) $= -\sqrt{1+x^8} \cdot (2x)$ (4 pts).