Calculus I, Fall 2015 (http://www.math.nthu.edu.tw/~wangwc/)

Brief answer to selected problems in HW09

1. Section 4.5:

problem 80: a = -2,  $b = -\frac{8}{3}$ . problem 84(c): Answer = 1. problem 86: Solve for  $\frac{d}{dx}x^{\frac{1}{x^n}} = 0$ , one gets  $x^{\frac{1}{x^n}\frac{1-n\ln x}{x^{n+1}}} = 0$ . So the only critical point is  $x = e^{\frac{1}{n}}$ . Next show that  $x = e^{\frac{1}{n}}$  is indeed a maximum by first derivative test. Answer: Maximum  $= e^{\frac{1}{ne}}$ .

2. Section 4.6:

problem 12: maximize  $V(y) = \frac{1}{3}\pi(9-y^2)(3+y)$  on  $0 \le y \le 3$ . It is easier to calculate than using V(x).

problem 48: Similar to Example 4. Minimize  $t = \frac{\sqrt{a^2 + x^2}}{c} + \frac{\sqrt{b^2 + (d - x)^2}}{c}$  with respect to x,

3. Section 4.7:

Problem 18: Solve, for example,  $f(x) = \tan(\frac{x}{4}) - 1 = 0$ .

Problem 29: The solution:  $x_* = 1$ . Newton's method:  $x_{n+1} = x_n - \frac{x_n - 1}{40}$ . Therefore the error between *n*th and (n + 1)th iteration is given by  $x_{n+1} - x_* = \frac{39}{40}(x_n - x_*)$ . It takes about  $\frac{3}{\log_{10}(\frac{40}{39})} \approx 118$  iterations.

Problem 30: Combine  $r\theta = 3$  and  $r\sin(\frac{\theta}{2}) = 1$  to get  $f(r) = r\sin(\frac{3}{2r}) - 1 = 0$  and solve for r.