Calculus II, Spring 2016 (http://www.math.nthu.edu.tw/ wangwc/)

Solutions to selected problems in HW for Week 15

1. Section.16.3: Problem 26.
Check the component test conditions:
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Since the natural domain D = {(z,y,2) € R® : (z,y,2) # (0,0,0)} is simply con-
nected, we can conclude that the line integral is independt of path.

2. Section.16.4: Problem 10.
Let F' = Mi+ Nj and R the region enclosed by the curve C. Since M and N have
continuous first partial derivatives everywhere, we can apply Green’s Theorem.
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3. Section.16.4: Problem 38.
Let FF'= Mi+ Nj and C' an arbitrary piecewise smooth simple closed curve enclosing
a region R. Since M and N have continuous first partial derivatives everywhere, we
can apply Green’s Theorem.
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which admits the maximal value as R = {(z,y) : 1— 12? +y* > 0}, that is, as C' is
the curve 1z% + y* = 1.

4. Section.16.4: Problem 39.



a. First compute Vf = ( 2z > Since the components of V f are not defined
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at (0,0), we cannot apply Green’s Theorem on the region enclosed by any circle
C : 22 +9y*> = a® a > 0. Thus we compute the line integral directly. Let
r(t) = (acost,asint), 0 <t < 2m. (counterclockwise)
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b. Let R be the region enclosed by K.
If (0,0) lies ouside K, then the components of V f have continuous derivaives at
(0,0), and thus we can apply Green’s Theorem.
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If (0,0) lies inside K, then we choose a circle curve C' : 2% + y* = a? with a > 0
small enough so that C totally lies inside K (no intersection). Then the new
region R enclosed by these two curves K and C' doesn’t contain (0,0), and thus
we can apply Green’s Theorem.
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5. Homework assignment: Problem 2.
Let D = {(x,y,2) € R*: 2* +y* # 0}.

(a) Check directly.
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Thus F' is conservative on D.
Let r(t) = (cost)i + (sint)j, 0 <t < 2w. Then
2m 2w
G(r(t)) - r'(t)ds = / (—sint,cost) - (—sint,cost)dt = 2w # 0.
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Thus G is not conservative on D.

We can determine whether H is conservative on D just by checking whether
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for any zp € R and d > 0. To see this, we need to verify that fKH -Tds =0
for any loop K which surrounds the z-axis from our assumption (x). For other
loop K which doesn’t surround the z-axis, we can apply Stokes’ Theorem on the
piecewise smooth oriented surface enclosed by K to conclude that
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where the last equality comes from the component test conditions.

Now let K be a loop which surrounds the z-axis. Let C' = {(z,y,20) : 22+ ¢y* =
d?} be chosen well so that C' and K form the boundary of a “two-sided” piecewise
smooth oriented surface S. Then we can apply Stokes” Theorem on S:
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where the last equality comes from the component test conditions. By our as-
sumption (x), ¢, H - T ds = 0. Thus,
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6. Homework assignment: Problem 3.

(1) D={(z,y,2) eR*: (x,y,2) #(0,0,0)} = R*\ {(0,0,0)}.
(2) Check directly.

(3) Yes.

(4)

4) Yes. Since D is simply connected (by (3)) and F' satisfies the component test
conditions on D (by (2)), F' is conservative on D. In fact, one after integration,

it is easy to find the F' = V f where f(x,y,2) = /22 + y? + 22



