Midterm Exam 1

Oct 27, 2015, 10:10AM

1. (10 pts) Evaluate $\lim_{\theta \to \frac{\pi}{3}} \frac{\cos \theta - \frac{1}{2}}{\theta - \frac{\pi}{3}}$.

Ans:

$$\lim_{\theta \to \frac{\pi}{3}} \frac{\cos \theta - \frac{1}{2}}{\theta - \frac{\pi}{3}} = (\cos \theta)'|_{\theta = \frac{\pi}{3}} (5 \text{ pts}) = -\sin \theta|_{\theta = \frac{\pi}{3}} = -\frac{\sqrt{3}}{2}.(5 \text{ pts})$$

2. (10 pts) Let $f_i(x) = a_i x^2 + b_i x + c_i$, i = 1, 2, 3. Evaluate

$$\frac{d}{dx} \begin{vmatrix} f_1(x) & f_1'(x) & f_1''(x) \\ f_2(x) & f_2'(x) & f_2''(x) \\ f_3(x) & f_3'(x) & f_3''(x) \end{vmatrix}$$

Ans

$$= \begin{vmatrix} f'_{1}(x) & f'_{1}(x) & f''_{1}(x) & f''_{1}(x) \\ f''_{2}(x) & f''_{2}(x) & f''_{2}(x) \\ f''_{3}(x) & f''_{3}(x) & f'''_{3}(x) \end{vmatrix} + \begin{vmatrix} f_{1}(x) & f''_{1}(x) & f''_{1}(x) \\ f_{2}(x) & f''_{2}(x) & f''_{2}(x) \\ f_{3}(x) & f''_{3}(x) & f'''_{3}(x) \end{vmatrix} + \begin{vmatrix} f_{1}(x) & f'_{1}(x) & f''_{1}(x) \\ f_{2}(x) & f''_{2}(x) & f''_{2}(x) \\ f_{3}(x) & f''_{3}(x) & f'''_{3}(x) \end{vmatrix}$$

$$= \begin{vmatrix} f_{1}(x) & f'_{1}(x) & f''_{1}(x) \\ f_{2}(x) & f''_{2}(x) & f'''_{2}(x) \\ f_{3}(x) & f''_{3}(x) & f'''_{3}(x) \end{vmatrix}$$

$$= \begin{vmatrix} f_{1}(x) & f'_{1}(x) & f''_{1}(x) \\ f_{2}(x) & f''_{2}(x) & f'''_{3}(x) \\ f_{3}(x) & f''_{3}(x) & 0 \end{vmatrix} = 0.$$

$$(2 \text{ pts})$$

$$= \begin{vmatrix} f_{1}(x) & f'_{1}(x) & 0 \\ f_{2}(x) & f'_{2}(x) & 0 \\ f_{3}(x) & f''_{3}(x) & 0 \end{vmatrix} = 0.$$

3. (10 pts) Find $\frac{dy}{dx}$ where $y = x^{(x^x)}, x > 0$.

Ans: $= x^{(x^x)}x^x(\ln x(1 + \ln x) + \frac{1}{x}).(3 \text{ pts+3 pts+4 pts})$

4. (10 pts) Find y'(1) and y''(1) where y(x) is implicitly given by $\tan(x+y) + \sin^{-1}(x^2+y) = 0$ near (x,y) = (1,-1).

Ans:

 $\frac{d}{dx}$ once:

$$[\sec^2(x+y)](1+y') + \frac{2x+y'}{\sqrt{1-(x^2+y)^2}} = 0, (3 \text{ pts})$$

evaluate at x = 1, y = -1, one gets $y'(1, -1) = -\frac{3}{2}$. (2 pts)

 $\frac{d}{dx}$ twice:

$$[2\sec^2(x+y)\tan(x+y)](1+y')^2 + [\sec^2(x+y)]y'' + \frac{(2+y'')(1-(x^2+y)^2)+(x^2+y)(2x+y')^2}{(1-(x^2+y)^2)^{\frac{3}{2}}} = 0$$
(3 pts)

evaluate at x = 1, y = -1, one gets y''(1, -1) = -1.(2 pts)

5. (10 pts) Let f^{-1} be the inverse function of f. Evaluate $\frac{d^2}{dy^2}f^{-1}(y)$ in terms of f' and f''. Show all details.

Ans:

$$\frac{d}{dy}f^{-1}(y) = \frac{1}{f'(f^{-1}(y))}. \quad (2 \text{ pts})$$

$$\frac{d^2}{dy^2}f^{-1}(y) = -\frac{f''(f^{-1}(y)) \cdot \frac{d}{dy}f^{-1}(y)}{[f'(f^{-1}(y))]^2} \quad (6 \text{ pts})$$

$$= -\frac{f''(f^{-1}(y))}{[f'(f^{-1}(y))]^3}. \quad (2 \text{ pts})$$

6. (10 pts) Let $f(x):[0,1] \mapsto [0,1]$ be a continuous function. Prove that f(x)=x has at least one solution.

Ans: Let g(x) = f(x) - x, then g(x) is continuous on [0, 1].(3 pts) Since $0 \le f(x) \le 1$, we have

$$g(0) = f(0) - 0 \ge 0$$
(2 pts)
 $g(1) = f(1) - 1 \le 0$ (2 pts)

By Intermediate Value Theorem, $\exists c \in [0,1] \text{ s.t. } g(c) = 0$, i.e. f(c) = c. (3 pts) Hence f(x) = x has at least one solution on [0,1].

7. (10 pts) Start with domain and range for csc and csc^{-1} , derive the formula for the derivative of csc^{-1} .

Ans:

$$csc y : \left[-\frac{\pi}{2}, 0 \right) \cup \left(0, \frac{\pi}{2} \right] \to \left(-\infty, -1 \right] \cup \left[1, \infty \right),$$

$$csc^{-1} x : \left(-\infty, -1 \right] \cup \left[1, \infty \right) \to \left[-\frac{\pi}{2}, 0 \right) \cup \left(0, \frac{\pi}{2} \right]. \quad \textbf{(2 pts)}$$

$$y = \csc^{-1} x \Rightarrow \csc y = x \Rightarrow -\csc y \cot y \frac{dy}{dx} = 1 \Rightarrow \frac{dy}{dx} = -\frac{1}{\csc y \cot y} \quad \textbf{(4 pts)}$$

$$\Rightarrow \frac{dy}{dx} = \begin{cases}
 -\frac{1}{x\sqrt{x^2 - 1}}, & x > 1 \\
 \frac{1}{x\sqrt{x^2 - 1}}, & x < -1 \end{cases} = -\frac{1}{|x|\sqrt{x^2 - 1}}, |x| > 1. \quad \textbf{(4 pts)}$$

- 8. (10 pts) True or False? If true, prove it. If false, give a counter example.
 - (a) If y = f(x) is differentiable at x = c then it is continuous at x = c.
 - (b) If y = f(x) is continuous at x = c then it is differentiable at x = c.

Ans:

(a) True. Suppose f'(c) exitst.

$$\lim_{x \to c} [f(x) - f(c)] = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \cdot (x - c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \cdot \lim_{x \to c} (x - c) = f'(c) \cdot 0 = 0.$$
(5 pts)

- (b) False. Let f(x) = |x| and c = 0. Then f is continuous at c but not differentiable at c. (: $\lim_{x \to 0+} \frac{|x|}{x} = 1 \neq -1 = \lim_{x \to 0-} \frac{|x|}{x}$)

 (5 pts)
- 9. (10 pts) Give formal definition of $\lim_{x\to\infty} f(x) = L$. Then verify that $\lim_{x\to\infty} \frac{1}{x} = 0$ using the $\varepsilon \delta$ argument.

Ans:

 $\lim_{x\to\infty} f(x) = L$ if given any $\epsilon > 0$, $\exists N > 0$ such that for all $x, x > N \Rightarrow |f(x) - L| < \epsilon.$ (5 pts)

Given any $\epsilon > 0$, pick $N = \frac{1}{\epsilon} > 0$ (3 pts), then for all x, x > N, $\left| \frac{1}{x} - 0 \right| = \frac{1}{x} < \frac{1}{N} = \epsilon$ (2 pts)

10. (16 pts) Give formal definition of $\lim_{x\to c} f(x) \neq L$. Then verify that $\lim_{x\to 0} \sin x \neq 1$ using $\varepsilon - \delta$ argument.

Ans:

 $\lim_{x\to c} f(x) \neq L$ if $\exists \epsilon > 0$ such that for any $\delta > 0$, there exists x such that $0 < |x-c| < \delta$ and $|f(x) - L| \geq \epsilon$. (4 pts)

Take
$$\epsilon = \frac{1}{2}$$
. Given any $\delta > 0$. Take $x = \min\{\frac{\delta}{2}, \frac{\pi}{6}\}$. (6 pts)
Then $0 < |x - 0| = x < \delta$ and $|\sin x - 1| = 1 - \sin x \ge 1 - \frac{1}{2} = \epsilon$. ($\because 0 < x \le \frac{\pi}{6} \Rightarrow 0 < \sin x \le \frac{1}{2}$) (6 pts)