Calculus I, Fall 2014

Brief solutions to Midterm Exam 1

1. (10 pts) Find $\lim_{y \to +\infty} y \sin \frac{2}{\sqrt{y}}$.

Ans:

$$= \lim_{y \to +\infty} \sqrt{y} \ 2 \ \frac{\sqrt{y}}{2} \sin \frac{2}{\sqrt{y}} = \infty \cdot 2 \cdot 1 = \infty.$$

2. (12 pts) Give formal definition of $\lim_{x\to 0^+} \frac{1}{x} = \infty$ and verify it using the $\varepsilon - \delta$ argument.

Ans:

For any $M \in \mathbb{R}$, there exist $\delta > 0$ such that $0 < x < \delta$ implies f(x) > M. Proof: If M > 0, take $\delta = 1/M$. If $M \le 0$, take any $\delta > 0$ (for example $\delta = 1$) will do. Then verify (details skipped).

- 3. (12 pts) Find dy/dx where $y = x^{(x^x)}, x > 0$. Need not simplify your expression. **Ans**: $= x^{(x^x)}x^x(\ln x(1+\ln x) + \frac{1}{x}).$
- 4. (10 pts) Find y' and y'' at (1, -1) where y(x) is implicitly given by $\tan^{-1}(x+y) + \sin^{-1}(x^2+y) = 0$.

Ans:

 $\frac{d}{dx}$ once:

$$\frac{1+y'}{1+(x+y)^2} + \frac{2x+y'}{\sqrt{1-(x^2+y)^2}} = 0,$$

evaluate at x = 1, y = -1, one gets $y'(1, -1) = -\frac{3}{2}$. $\frac{d}{dx}$ twice:

$$\frac{y''(1+(x+y)^2)-2(x+y)(1+y')^2}{(1+(x+y)^2)^2} + \frac{(2+y'')(1-(x^2+y)^2)+(x^2+y)(2x+y')^2}{(1-(x^2+y)^2)^{\frac{3}{2}}} = 0$$

evaluate at x = 1, y = -1, one gets y''(1, -1) = -1.

5. (12 pts) Find the smallest n such that $\frac{d^n}{dx^n}(x^{10}\sin x)|_{x=0}$ is nonzero and find this value.

Ans:
$$n = 11$$
. $\frac{d^{11}}{dx^{11}}(x^{10}\sin x)|_{x=0} = 11!$.

6. (16 pts) True or False? If true, prove it. If false, give a counter example.
If |f(x) - (3x + 2)| ≤ |x|^{1.5} for all x ∈ R, then f is differentiable at x = 0.
Ans: True.

1

Step 1: let x = 0, we have f(0) = 2.

Step 2:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x) - (3x + 2)}{x - 0} + 3.$$

Since $\left|\frac{f(x)-(3x+2)}{x-0}\right| \leq |x|^{0.5}$, it follows from Sandwich Theorem that

$$\lim_{x \to 0} \frac{f(x) - (3x+2)}{x - 0} = 0.$$

Therefore

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 3, \quad \text{differentiable.}$$

7. (12 pts) Write down $L(x, x_0)$, the linear approximation of f near x_0 . Find an approximate value of $\sin(\frac{\pi}{3} - 0.01)$ such that the error of the approximation is smaller than 5×10^{-5} . (Hint: choose x_0 carefully)

Ans:

$$L(x, x_0) = f(x_0) + f'(x_0)(x - x_0).$$

Choose $f(x) = \sin x, x_0 = \frac{\pi}{3}$. $\sin(\frac{\pi}{3} - 0.01) \approx \sin(\frac{\pi}{3}) + \cos(\frac{\pi}{3})(-0.01) = \frac{\sqrt{3}}{2} - 0.005.$
$$|\text{Error}| \le \frac{1}{2} |\sin c| \ 0.01^2 \le 5 \times 10^{-5}$$

8. (16 pts) Let f^{-1} be the inverse function of f. Evaluate $\frac{d^2}{dy^2}f^{-1}(y)$ in terms of f' and f''. Show all details.

Ans:

Let y = f(x), then $x = f^{-1}(y)$ and

$$f^{-1}(y) = f^{-1}(f(x)) = x$$
, or $f(x) = f(f^{-1}(y)) = y$

take $\frac{d}{dx}$ twice on the first equation or $\frac{d}{dy}$ twice on the second equation both lead to

$$\frac{d^2}{dy^2}f^{-1}(y)(f'(x))^2 + \frac{d}{dy}f^{-1}(y)f''(x) = 0$$

which gives

$$\frac{d^2}{dy^2}f^{-1}(y)|_{y=f(x)} = -\frac{f''(x)}{(f'(x))^3},$$

or

$$\frac{d^2}{dy^2}f^{-1}(y) = -\frac{f''(f^{-1}(y))}{(f'(f^{-1}(y)))^3},$$