Calculus I, Fall 2014 (http://www.math.nthu.edu.tw/~wangwc/)

Solutions in Quiz03

1. If f(x) is continuous on [a, b] and differentiable on (a, b), then there is one point c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

- 2. Absolute maximum is $f(-3) = 6\sqrt[3]{9}$ Absolute minimum is f(3) = f(0) = 0.
- 3. It's true. Let $f(x) = \cos x$, then f(x) is continuous and differentiable on R. For all values of x, by Mean Value Theorem,

$$\frac{\cos x - \cos 0}{x - 0} = \sin c$$

for some $c \in (0, x)$.

Hence

$$|\cos x - 1| \le |x|$$

for all values of x.

4. Let
$$f(x) = e^x - 1 - x$$
, then $f(0) = 0$ and $f'(x) = e^x - 1 \ge 0$ on $x \ge 0$.
Hence $f(x) \ge f(0) = 0$ on $x \ge 0$. That is $e^x - 1 - x \ge 0$ on $x \ge 0$.
Let $g(x) = e^x - 1 - x - \frac{x^2}{2}$, then $g(0) = 0$ and $g'(x) = e^x - 1 - x \ge 0$ on $x \ge 0$.
Hence $g(x) \ge g(0) = 0$ on $x \ge 0$. That is $e^x \ge 1 + x + \frac{x^2}{2}$ on $x \ge 0$.

5.
$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)$$
 and $f''(x) = 12x^2 - 24x = 12x(x-2)$. We have

$$\begin{cases} \text{Critical points: } x=0, 3 \\ \text{Points of inflection: } x=0, 2 \end{cases}$$

and f(x)

Decreasing and concave up on
$$(-\infty, 0]$$

Decreasing and concave down on $[0, 2]$
Decreasing and concave up on $[2, 3]$
Increasing and concave up on $[3, \infty)$