Calculus I, Fall 2014

Brief answers to Quiz 1

Oct 02, 2014

1. Give formal definition of $\lim_{x\to c} f(x) \neq L$ (just the definition, need not find ϵ or δ , etc.).

Ans:

There exists an $\varepsilon_0 > 0$, such that for any $\delta > 0$, $\exists x_0 \in (c - \delta, c) \cup (c, c + \delta)$ and $|f(x_0) - L| \ge \varepsilon_0$

- 2. Find $\lim_{\theta \to 0} \frac{\sin(\sin \theta)}{\tan 2\theta}.$
Ans: 1/2.
- 3. State the Intermediate Value Theorem (Need not prove). Use it to find a c such that there is a root of " $x 1 = \cos x$ " on (c, c + 1).

Ans:

Let $g(x) = x - 1 - \cos x$, then g is continuous on R.

Since $g(1) = -\cos 1 < 0$, $g(2) = 1 - \cos 2 > 0$, by Intermediate Value Theorem, there exist $x_0 \in (1, 2)$ such that $g(x_0) = 0$, i.e. $x_0 - 1 = \cos x_0$. Therefore c = 1 works.

4. Use the $\epsilon - \delta$ argument to show that if both f(x) and g(x) are continuous at x = c, then so is 2f(x) - 3g(x).

Ans:

Since f(x) and g(x) are continuous at x = c, we have $\forall \epsilon > 0, \exists \delta_1 > 0, \delta_2 > 0$, such that for all x,

$$\begin{cases} |x-c| < \delta_1 \Longrightarrow |f(x) - f(c)| < \frac{\epsilon}{5} \\ |x-c| < \delta_2 \Longrightarrow |g(x) - g(c)| < \frac{\epsilon}{5} \end{cases}$$

Take $\delta = \min(\delta_1, \delta_2) > 0$, then for all $x, |x - c| < \delta$ implies

$$|[2f(x) - 3g(x)] - [2f(c) - 3g(c)]| \le 2|f(x) - f(c)| + 3|g(x) - g(c)| < \epsilon$$

Hence 2f(x) - 3g(x) is also continuous at x = c.

5. Give formal definitions of the following limits (Just the definition, need not find δ).

(a)
$$\lim_{x \to c^-} f(x) = L$$
 (b) $\lim_{x \to -\infty} f(x) = \infty$

Ans:

(a) $\forall \epsilon > 0, \exists \delta > 0$ such that, for all x,

$$c - \delta < x < c \Longrightarrow |f(x) - L| < \epsilon$$

(b) $\forall B > 0, \exists N < 0$ such that, for all x,

$$x < N \Longrightarrow f(x) > B$$