Calculus I, Fall 2014 (http://www.math.nthu.edu.tw/~wangwc/)

Brief answer to selected problems in HW05

1. Section 3.8: Problem 98. Let
1
f(x)=lnz = f'(z) = -

By definition, for fixed = > 0
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which implies
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2. Section 3.9: Problem 55. After differentiation, we find out
f'@) =g'(x), =>0
which means
f(x) =g(x)+e, 20

where ¢ is some constant. And z = 0 gives us
s
—5 = 0 + C, A 2 O

hence

On the other hand, we also can derive same result by following process.

For x > 0, let
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3. Hw05: Problem 3. Domain and image for csc and csc™*

cscx  :{zlr € Ryx # kn,Vk € Z} — (—o0, —1] U [1, 00)
csela i (=00, ~1U[L,00) = {yl = 5 <y < 5.y 70}

For |z| > 1, let
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4. Section 3.11: Problem 64.
(a)bo = f(a), by = f'(a), and by = L1

2

(b)Quadratic approximation of ﬁ at x =01is 1 +a + 22

(d)Quadratic approximation of 2 at z =1is 1 — (z — 1) + (z — 1)?

(e)Quadratic approximation of v/1+z at z = 0is 1+ %a: — %:p2

Graphs f, g, and h appear to be identical with their own quadratic approximation
around the given points.

5. Hw05: Problem 5. For v/1.009, let
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Then v/1.009 = £(0.009). Hence we use linear approximation at x = 0. By the error
formula, we can get error bound by following process.
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