Homework Assignment for Week 15

- 1. Section 16.3: Problems 1, 3, 5, 9, 11, 19, 21, 26, 29, 33.
- 2. Let $\mathbf{F} = \frac{x}{\sqrt{x^2+y^2}}\mathbf{i} + \frac{y}{\sqrt{x^2+y^2}}\mathbf{j} + 0\mathbf{k}$ and $\mathbf{G} = \frac{-y}{x^2+y^2}\mathbf{i} + \frac{x}{x^2+y^2}\mathbf{j} + 0\mathbf{k}$.
 - (a) Show that both F and G satisfy the component test.
 - (b) The natural domain for both \boldsymbol{F} and \boldsymbol{G} is $\{(x,y,z), x^2 + y^2 \neq 0\}$ (that is where \boldsymbol{F} and \boldsymbol{G} are defined). Show that \boldsymbol{F} is conservative in this domain by finding its potential function.
 - (c) Show that G is NOT conservative in this domain (read example 5).
 - (d) If given another H satisfying the component test in this domain, how do you determine whether H is conservative?
- 3. Let $\mathbf{F} = \frac{x}{\sqrt{x^2 + y^2 + z^2}} \mathbf{i} + \frac{y}{\sqrt{x^2 + y^2 + z^2}} \mathbf{j} + \frac{z}{\sqrt{x^2 + y^2 + z^2}} \mathbf{k}$. What is the natural domain for \mathbf{F} ? Show that \mathbf{F} satisfies the component test in this domain. Is this domain simply connected? Is \mathbf{F} conservative in this domain?
- 4. Section 16.4: Problems 10, 17, 19, 23, 27, 29, 38, 39.

 Remark: we did not cover 16.4 this week, but hopefully will do on Tuesday.