Calculus I, Fall 2015

Quiz 2

Oct 20, 2015

Show all details.

1. Evaluate
$$\frac{d^4}{dx^4} (x^4 \cos(x-1))|_{x=1}$$

- 2. Find the derivative of $y = \tan(e^{\sqrt{x^2+1}})$. Need not simplify your final expression.
- 3. Find all roots of y'' = 0 if $y = (1 + \frac{1}{x})^3$.
- 4. Use implicit differentiation (and not other methods) to find dy/dx and d^2y/dx^2 at (1, 1) where y(x) is implicitly given by $x^4 + y^4 = 2$.
- 5. True or False? (prove it if true, correct it if false).

If f, g and h are differentiable functions on R and f(g(x)) = h(x). Let $\frac{d}{dx}f(x) = f_1(x)$, $\frac{d}{dx}g(x) = g_1(x)$, $\frac{d}{dx}h(x) = h_1(x)$. Then $f_1(x) \cdot g_1(x) = h_1(x)$.

Calculus I, Fall 2015

Quiz 2

Oct 20, 2015

Show all details.

- 1. Evaluate $\frac{d^4}{dx^4} (x^4 \cos(x-1))|_{x=1}$.
- 2. Find the derivative of $y = \tan(e^{\sqrt{x^2+1}})$. Need not simplify your final expression.
- 3. Find all roots of y'' = 0 if $y = (1 + \frac{1}{x})^3$.
- 4. Use implicit differentiation (and not other methods) to find dy/dx and d^2y/dx^2 at (1, 1) where y(x) is implicitly given by $x^4 + y^4 = 2$.
- 5. True or False? (prove it if true, correct it if false).

If f, g and h are differentiable functions on R and f(g(x)) = h(x). Let $\frac{d}{dx}f(x) = f_1(x)$, $\frac{d}{dx}g(x) = g_1(x)$, $\frac{d}{dx}h(x) = h_1(x)$. Then $f_1(x) \cdot g_1(x) = h_1(x)$.