Midterm Exam 2

Dec 08, 2015, 10:10AM

- 1. True or False? If true, prove it. If false, give a counter example. If $|f(x) (3x + 2)| \le |x|^{1.5}$ for all $x \in R$, then f is differentiable at x = 0.
- 2. (a) Graph $f(x) = \frac{x}{\sqrt{x^2 + 1}}$. Give all details including possible asymptotes.
 - (b) The function y = f(x) is odd (f(-x) = -f(x)) and the root x^* to the equation f(x) = 0 is $x^* = 0$. Give formula of Newton's method for finding this root.
 - (c) The Newton's method does not always converge. There is an a > 0 such that Newton's method converges if and only if $-a < x_0 < a$. Take this fact for granted and find a (show how to find a, but need NOT prove that Newton's method converge if and only if $-a < x_0 < a$).
- 3. Let f be a differentiable function defined on $\{x \geq 0\}$ satisfying
 - (a): f(0) = -1,
 - **(b):** $f'(x) \ge 1/2$ for all $x \ge 0$.

Show that f(x) = 0 has one and only one solution on $\{x \ge 0\}$.

4. Find the limits of the following expressions:

(a)
$$\lim_{x \to 0^+} x^x$$
 (b) $\lim_{x \to 0^+} \frac{e^{\frac{-1}{x}}}{x}$ (c) $\lim_{x \to 0} \frac{x^2 \cos \frac{1}{x}}{\sin x}$

5. Solve for y(x) on x < 0 from

$$y''(x) = x^{-2}, \quad y(-1) = 1, \quad y'(-1) = 2.$$

- 6. Evaluate $\lim_{n\to\infty} \sum_{k=n}^{2n} \frac{n}{k^2}$
- 7. State both parts of Fundamental Theorem of Calculus, prove that part 1 implies part 2.
- 8. Evaluate

(a)
$$\int_{1}^{2} \frac{1}{x(1+\ln^{2}x)} dx$$
 (b) $\int_{0}^{4} x\sqrt{2x+1} dx$

- 9. True or False? If true, prove it. If false, give a counter example.
 - (a) If y = f(x) is differentiable at x = c then it is continuous at x = c.
 - (b) If y = f(x) is continuous at x = c then it is differentiable at x = c.
- 10. Start with domain and range for csc and \csc^{-1} , derive the formula for the derivative of \csc^{-1} .