Calculus I, Fall 2014

Final Exam

Jan 08, 2015

- 1. (14 pts) Find the solutions for $\frac{dy}{dx} = e^{x-y}$ and $x\frac{dy}{dx} + y = \sin x$, respectively.
- 2. (12 pts) Find the volume and surface area of the object obtained by rotating the region $\{(x-2)^2 + y^2 \le 1, x \ge 2\}$ around the y axis. Note the surface area consists of two parts, one generated by a half circle, the other generated by a line segment.
- 3. (8 pts) Order e^x , x^x , $(\ln x)^x$ and x^e from slowest to fastest growing rate as $x \to \infty$. Explain.

4. (6 pts) Write down the form of partial fraction expansion for $\frac{x^7}{(1-x^4)^2}$. Need NOT find the undetermined coefficients.

5. (64 pts) Evaluate

(1)
$$\int \frac{1}{2+\sin x} dx$$
 (2) $\int_{1}^{e^{\pi}} \sin(\ln x) dx$ (3) $\int \frac{1}{\sqrt{4x-x^2}} dx$ (4) $\int_{1}^{2} \frac{1}{e^{2x}-e^{-x}} dx$
(5) $\int_{0}^{\pi/4} \tan^3 x \sec^3 x \, dx$ (6) $\int x^2 e^{-x} dx$ (7) $\int_{0}^{1} \operatorname{sech} x \, dx$ (8) $\int_{0}^{1} \frac{1}{\sqrt{1+e^x}} dx$