Calculus II, Spring 2014

Midterm 2

May 08, 2014

Show all details.

1. Evaluate

$$\frac{d}{dy} \int_{1}^{2+y^2} \frac{\cos(xy)}{x} dx$$

2. True or false? Prove it or give a counter example.

Assume f(x, y), $f_x(x, y)$ and $f_y(x, y)$ are all continuous in \mathbb{R}^2 . Let $C = \{(x, y), f(x, y) = f(0, 0)\}$ and \mathcal{T} be a tangent vector of C at (0, 0). Then $\nabla f(0, 0) \cdot \mathcal{T} = 0$.

3. Use Lagrangian multipliers (and only Lagrangian multipliers) to find extreme values of $f(x, y, z) = xy + 2z^2$ on

$$\begin{cases} x^2 + y^2 + z^2 = 9\\ x - y = 0 \end{cases}$$

4. Find the absolute maximum and minimum of $f(x, y) = 2 + 2x + 2y - x^2 - y^2$ in the region bounded by x = 0, y = 0 and x + y = 6.

5. Let $f(x,y) = x^3 + y^3$ and $g(r,\theta) = f(r\cos\theta, r\sin\theta)$. Evaluate $\partial_r^2 g + (\partial_r g)/r + (\partial_\theta^2 g)/r^2$

- 6. Derive the Taylor expansion of f(x, y, z) around (0, 0, 0) up to quadratic terms of x, y and z and an expression of the remainder term, R_2 . You may assume that f and all its first and second derivatives are all continuous in \mathbb{R}^3 .
- 7. Evaluate $\left(\frac{\partial U}{\partial P}\right)_V$ and $\left(\frac{\partial U}{\partial T}\right)_V$ at (P, V, T) = (1, 2, 2) where $U(P, V, T) = T \exp(-P/V)$ with the constraint PV = T.
- 8. Evaluate $\int_0^2 \int_y^2 \frac{\sin x}{x} dx dy$.
- 9. Let $f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$, for $(x,y) \neq (0,0)$ and f(0,0) = 0. P = (0,0) and $u^{\theta} = (\cos\theta, \sin\theta)$, $\theta \in [0, 2\pi]$.
 - (a) Is f continuous at (0,0)? Explain.
 - (b) For fixed θ , write down the definition of the directional derivative $\left(\frac{df}{ds}\right)_{u^{\theta},P}$ and evaluate it.
 - (c) Does f have a linear approximation at (0,0)? Explain.