Calculus I, Fall 2013

Final Exam

Jan 14, 2014

- 1. (8 pts) Find the solutions for $\frac{dy}{dx} = 3x^2e^{-y}$.
- 2. (8 pts) Write down the form of partial fraction expansion for $\frac{x^7}{(1-x^4)^2}$. Need NOT find the undetermined coefficients.
- 3. (8 pts) Order e^x , x^x , $(\ln x)^x$ and x^e from slowest to fastest growing rate as $x \to \infty$.
- 4. (64 pts) Evaluate

(1)
$$\int \frac{1}{2+\sin x} dx$$
 (2) $\int e^x \sin x \, dx$ (3) $\int \frac{1}{\sqrt{4x-x^2}} \, dx$ (4) $\int_0^{\pi/4} \tan^3 x \sec^3 x \, dx$

(5)
$$\int_{1}^{2} \frac{1}{e^{x} - e^{-x}} dx$$
 (6) $\int_{0}^{\infty} x^{2} e^{-x} dx$ (7) $\int_{0}^{1} \frac{1}{\sqrt{1 + e^{x}}} dx$ (8) $\int_{0}^{\pi} \sqrt{1 + \sin x} dx$

- 5. (12 pts) Does the improper integral $\int_{1}^{\infty} \frac{1}{\sqrt{x^3 x}} dx$ converge or diverge? Explain (DO NOT try to integrate explicitly).
- 6. (8 pts) Express $\int_1^2 \sin x \, dx$ as a Riemann sum. That is, $\lim_{\dots} \sum_{\dots}^{\dots} \cdots$
- 7. (8 pts) Evaluate $\lim_{x\to 0^+} x^{x \ln x}$.
- 8. (16 pts) Find the volume and surface area of the object obtained by rotating the region $\{(x-2)^2 + y^2 \le 1, x \ge 2\}$ around the y axis. Note the surface area consists of two parts, one generated by a half circle, the other generated by a line segment.
- 9. (.100 pts) Schedule recitation change for next semester.