Calculus I, Fall 2011

Quiz 5

Dec 28, 2011

Show all details.

1. Solve for
$$\frac{dy}{dx} + xy = x$$
, $y(0) = -6$.

- 2. Find the volume enclosed by $\{(x, y, z)|x^2 + y^2 < 9\}$, $\{(x, y, z)|z > 0\}$ and $\{(x, y, z)|x z > 0\}$. Try plot the region, express the answer as $\int_0^3 A(x)dx$ and find the answer.
- 3. Give the formula for volume of solid AND for the area of the surface generated by revolving the curve x = f(y), $0 \le y \le 1$ around the y-axis. Here f(0) = f(1) = 0 and f(y) > 0 for 0 < y < 1.

4. Evaluate
$$\int \frac{dx}{\sqrt{x(x+1)}}$$
.
5. Evaluate $\int \frac{1}{\sec\theta + \tan\theta} d\theta$.

Calculus I, Fall 2011

Quiz 5

Dec 28, 2011

Show all details.

- 1. Solve for $\frac{dy}{dx} + xy = x$, y(0) = -6.
- 2. Find the volume enclosed by $\{(x, y, z)|x^2 + y^2 < 9\}$, $\{(x, y, z)|z > 0\}$ and $\{(x, y, z)|x z > 0\}$. Try plot the region, express the answer as $\int_0^3 A(x)dx$ and find the answer.
- 3. Give the formula for volume of solid AND for the area of the surface generated by revolving the curve x = f(y), $0 \le y \le 1$ around the y-axis. Here f(0) = f(1) = 0 and f(y) > 0 for 0 < y < 1.
- 4. Evaluate $\int \frac{dx}{\sqrt{x(x+1)}}$. 5. Evaluate $\int \frac{1}{\sec\theta + \tan\theta} d\theta$.