1. Give a partition P on [0,1] such that \| P \| = 0.2 2. Evaluate \lim_{n\to\infty} \sum_{k=1}^n { \sqrt{k} \over n\sqrt{n} } 3. If \int_0^x f(t) dt = \sin(x^2), what is f(1) and f'(1)? 4. Evaluate d \over dx \int_0^{x^2} \sin \sqrt{t} dt 5. \int_1^4 {1+\sqrt{u} \over \sqrt{u}} du \int { x-1 \over \sqrt{1-x^2} dx \int{ 2^{-\sqrt{r} \over \sqrt{r} } dr \int { 1\over x^2 + 2x +2 } dx \int \sinh(\sin\theta) \cos\theta d \theta