Chapter 5 Series Solutions

Consider the following second order initial value problem

$$\begin{cases} P(x)y'' + Q(x)y' + R(x)y = 0\\ y(x_0) = y_0\\ y'(x_0) = y'_0 \end{cases}$$

We want to find the solution of the form $y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ as a convergence power series. Since $P(x_0) \neq 0$, x_0 is a regular point, we write

$$y'' + p(x)y' + q(x)y = 0, \text{ where } p = \frac{Q}{P}, \text{ and } q = \frac{R}{P}.$$
If
$$p(x) = \sum p_n(x - x_0)^n$$

$$q(x) = \sum q_n(x - x_0)^n$$

$$y'_n(x) = \sum_{n=1}^{\infty} na_n(x - x_0)^{n-1}$$

$$y''_n(x) = \sum_{n=2}^{\infty} n(n-1)a_n(x - x_0)^{n-2}$$

$$p(x)y'(x) = p_0a_1 + (p_1a_1 + p_02a_2)(x - x_0) + \cdots$$

$$q(x)y'(x) = q_0a_0 + (q_1a_0 + q_0a_1)(x - x_0) + \cdots$$

Comparing the Coefficients

$$2a_{2} + p_{0}a_{1} + q_{0}a_{0} = 0$$

$$6a_{3} + p_{1}a_{1} + 2p_{0}a_{2} + a_{0}q_{1} + q_{0}a_{1} = 0$$

$$y(x_{0}) = y_{0} \Rightarrow a_{0} = y_{0}$$

$$y'(x_{0}) = y'_{0} \Rightarrow a_{1} = y'_{0}$$

Thus, we can solve a_n inductively.

Theorem 1: If p(x), q(x) are analytic on $(x_0 - \varepsilon, x_0 + \varepsilon)$, then $\sum a_n(x - x_0)^n$ obtained by the procedure also converges on $(x_0 - \varepsilon, x_0 + \varepsilon)$.

Example: Solve $\begin{cases} y'' + y = 0 \\ y(0) = a_0, \ y'(0) = a_1 \end{cases}$ by series expansion.

To find
$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
, for $x_0 = 0$.

Since
$$y''(x) = \sum_{n=2}^{\infty} n(n-1)a_n(x-x_0)^{n-2}$$
,

we have
$$\sum_{n=2}^{\infty} n(n-1)a_n(x-x_0)^{n-2} + \sum_{n=0}^{\infty} a_n(x-x_0)^n = 0.$$

Let n-2=m, then

$$\sum_{m=0}^{\infty} (m+2)(m+1)a_{m+2}(x-x_0)^m + \sum_{m=0}^{\infty} a_m(x-x_0)^m = 0.$$

Therefore $(m+2)(m+1)a_{m+2} = -a_m$, or $a_{m+2} = \frac{-a_m}{(m+2)(m+1)}$. For example

$$a_2 = \frac{-a_0}{2!}, \ a_4 = \frac{a_0}{4!}, \ a_6 = \frac{-a_0}{6!}, \ a_3 = \frac{-a_1}{3!}, \ a_5 = \frac{a_1}{5!}, \ a_7 = \frac{-a_1}{7!}.$$

Therefore

$$y(x) = a_0 \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \right) + a_1 \left(1 - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \right)$$

converges.

Remark: We can obtain an "formally" form recurrence relation. We need to determine where these power series converge.

<u>Method 1</u>: Please check the radius of convergence directly.

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots, \qquad a_{2n} = \frac{x^{2n}}{(2n)!}$$

$$\sqrt[2n]{|a_{2n}|} = \frac{|x|}{\sqrt[2n]{(2n)!}} < \frac{|x|}{R}$$
 where $(2n)! >> R^{2n}$ $\forall R > 0$

For n large,
$$\lim_{n\to\infty} \sqrt[2n]{|a_{2n}|} = 0$$

radius of convergence $= \infty$

Similarly,
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
 converges for all $x \in \mathbb{R}$.

Method 2:

$$y'' + py' + qy = 0$$
 p, q are analytic (where $p = 0, q = 1$)

For p, q are constant, p, q are analytic.

So radius of convergence is infinite for p and q.

By Theorem, $y(x) = a_0 + a_1 x + a_2 x^2 + \cdots$ converges for all $x \in \mathbb{R}$.

Example: (Airy Function)

$$y'' - xy = 0$$
 $y(1) = a_0$ $y'(1) = a_1$

$$y'' - [(x-1) + 1]y = 0$$

Since (x-1)+1 is analytic and radius of convergence is infinite,

therefore
$$y(x) = \sum_{n=0}^{\infty} a_n (x-1)^n$$
 converges for all $x \in \mathbb{R}$

$$y''(x) = \sum_{n=2}^{\infty} n(n-1)a_n(x-1)^{n-2} = \sum_{m=0}^{\infty} (m+2)(m+1)a_{m+2}(x-1)^m$$

$$[(x-1)+1]y = \sum_{n=0}^{\infty} a_n (x-1)^{n+1} + \sum_{n=0}^{\infty} a_n (x-1)^n$$

$$= \sum_{m=1}^{\infty} a_{m-1}(x-1)^m + \sum_{m=0}^{\infty} a_m(x-1)^m$$

$$m = 0 \quad , \quad 2a_2 = a_0$$

$$m = 0$$
 , $2a_2 = a_0$
 $\Leftrightarrow m = 1$, $6a_3 = a_0 + a_1$

$$m=2$$
 , $12a_4=a_1+a_2$

Two linearly independent solution given respectively by $y_3(x) \Leftrightarrow a_0 = 1$,

$$a_1 = 0$$
; $y_4(x) \Leftrightarrow a_0 = 0$, $a_1 = 1$

 $y_1(x)$ is a power series around x = 0 with y(0) = 1, y'(0) = 0.

 $y_2(x)$ is a power series around x = 0 with y(0) = 0, y'(0) = 1.

Determine the radius of convergence

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$a_n = \begin{cases} (-1)^n \frac{1}{n!} &, & \text{if n is odd number} \\ 0 &, & \text{if n is even number} \end{cases}$$

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

The equality is valid when $z = z_0$.

In general, there exists R > 0

s.t.
$$\sum_{n=0}^{\infty} a_n (z-z_0)^n \begin{cases} \text{convergent for } |z-z_0| < R \\ \text{divergent for } |z-z_0| > R \\ \text{no conclusion on } |z-z_0| = R \end{cases}$$

How to Determine R?

$$R = \frac{1}{\overline{\lim_{n \to \infty}} |a_n|^{\frac{1}{n}}}$$

Sufficient condition to determine R:

(1) If
$$\lim_{n\to\infty} |a_n|^{\frac{1}{n}}$$
 exists, then $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = \frac{1}{R}$

(2) If
$$\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|}$$
 exists, then $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = \frac{1}{R}$

Remark: If $f(x) = \sum a_n(x - x_0)^n$ is valid in $(x_0 - \varepsilon, x_0 + \varepsilon)$, then $f \in C^{\infty}$ and

$$a_0 = f(x_0), a_1 = f'(x_0), a_2 = \frac{f''(x_0)}{2!},$$

$$(1+x^2)y'' + 2xy' + 4x^2y = 0$$

$$\Rightarrow y'' + \frac{2x}{1+x^2}y' + \frac{4x^2}{1+x^2}y = 0$$

The radius of convergence for p(x), q(x) around $x = \frac{1}{2}$ is exactly $\frac{\sqrt{5}}{2}$

Remark: From local existence and unique theorem

Then y(x) on $-\infty < x < \infty$ for given $y(\frac{1}{2}), y'(\frac{1}{2})$

Example: What is the radius of convergence for given series solution of $(1+x^2)y'' + 2xy' + 4x^2y = 0$?

Sol.:

(1) around
$$x = 0$$

$$y'' + \frac{2x}{1+x^2}y' + \frac{4x^2}{1+x^2}y = 0$$

$$p(x) = \frac{2x}{1+x^2} = 2x(1-x^2+x^4) \quad \text{converges for } |x^2| < 1$$

$$\text{diverges for } |x^2| \ge 1$$
 some for $g(x) = \frac{4x^2}{1+x^2}$ radius of convergence = 1
$$\therefore y(x) = \sum a_n x^n \text{ converges at least on } |x| < 1.$$

(2) around
$$x = \frac{1}{2}$$

$$p(x) = \frac{2x}{1+x^2} = p_n(x-\frac{1}{2})^n, \text{ radius of convergence} = \frac{\sqrt{5}}{2}$$
Some for $g(x)$

$$\therefore y(x) = \sum b_n(x-\frac{1}{2})^n \text{ converges at least on } |x-\frac{1}{2}| < \frac{\sqrt{5}}{2}$$

Facts: (complex analytic) $\frac{2z}{1+z^2}$ is differentiable (: analytic) on $\mathbb{C}\{\pm i\}$. If $B_{\rho}(\frac{1}{2}) \subseteq \mathbb{C}\{\pm i\}$ then radius of convergence for $\sum_{n=0}^{\infty} a_n(x-\frac{1}{2})^n$ is at least e In above example, radius of convergence = e.

Remark: The solution exists for all $x \in \mathbb{R}$. But the power series only converges

on
$$(\frac{1}{2} - \frac{\sqrt{5}}{2}, \frac{1}{2} + \frac{\sqrt{5}}{2})$$
.

Remark: $\frac{1}{1+x^2}$ exists for all $x \in \mathbb{R}$. But $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} a_n (x - \frac{1}{2})^n$ only on $(\frac{1}{2} - \frac{\sqrt{5}}{2}, \frac{1}{2} + \frac{\sqrt{5}}{2})$.

 $\mathbf{P}(x)y'' + \mathbf{Q}(x)y' + \mathbf{R}(x)y = 0 \ , \ \mathbf{P}. \ \mathbf{Q}. \ \mathbf{R} : \text{polynomials of } x.$

 $x = x_0$ is a ordinary point if $\lim_{x \to x_0} \frac{\mathbf{Q}(x)}{\mathbf{P}(x)}$ and $\lim_{x \to x_0} \frac{\mathbf{R}(x)}{\mathbf{P}(x)}$ exists.

Example: P(x) = x, Q(x) = sinx, $R(x) = x^2$, $x_0 = 0$

$$\Rightarrow \begin{cases} y''(x) + \frac{\sin x}{x}y' + xy = 0\\ y(0) = a_0 \quad y'(0) = a_1 \quad x \neq 0 \quad \mathbb{R} = \infty \end{cases}$$