Chapter 3 Second Order Differential Equation

Linear Superposition Priciple

y'' + p(t)y' + q(t)y = 0 (linear ODE)

 $y_1(t) \cdot y_2(t)$ are solutions :

 $\Rightarrow c_1 y_1(t) + c_2 y_2(t)$ is also a solution

$$ay'' + by' + cy = 0$$
 $a, b, c \in \mathbb{R}$

Try e^{rt} , r to be determined

$$\Rightarrow (ar^2 + br + c) e^{rt} = 0$$

If r is a solution of $ar^2 + br + c = 0$, then e^{rt} is a solution of

$$ay'' + by' + cy = 0.$$

3 cases

case (1):
$$r = r_1, r_2$$
 $r_1, r_2 \in \mathbb{R}$, and $r_1 \neq r_2$.
 \exists at least 2 solutions $e^{r_1 t}, e^{r_2 t} \& c_1 e^{r_1 t} + c_2 e^{r_2 t}$

case (2):
$$r = \alpha + \beta i$$
 $\alpha, \beta \in \mathbb{R}$

$$\Rightarrow e^{(\alpha + i\beta)t}, e^{(\alpha - i\beta)t} \text{ are solutions of } ay'' + by' + cy = 0$$

$$c_1 e^{(\alpha + i\beta)t} + c_2 e^{(\alpha - i\beta)t}$$

$$= (c_1 + c_2) e^{\alpha t} (\cos \beta t) + i(c_1 - c_2) e^{\alpha t} \sin \beta t$$

$$= \tilde{c}_1 e^{\alpha t} \cos \beta t + i \tilde{c}_2 e^{\alpha t} \sin \beta t$$

$$e^{(\alpha + i\beta)t} = e^{\alpha t} \cdot e^{i\beta t} = e^{\alpha t} (\cos \beta t + i \sin \beta t)$$

$$e^{(\alpha - i\beta)t} = e^{\alpha t} \cdot e^{-i\beta t} = e^{\alpha t} (\cos \beta t - i \sin \beta t)$$

case (3): double roots r_1, r_2

 e^{rt} and te^{rt} are 2 solutions. $(b^2 = 4ac)$

For (3), i.e. r = -b/2a, e^{rt} is a solution

Try $p(t)e^{rt}$ as follow:

$$(p(t)e^{rt})' = p'e^{rt} + rpe^{rt}$$

 $(p(t)e^{rt})'' = p''e^{rt} + 2rp'e^{rt} + r^2pe^{rt}$

Pluging into ay'' + by' + cy = 0, we get

$$a(p'' + 2p'r + pr^{2}) + b(p' + pr) + cp = 0$$
$$ap'' + (2ar + b)p' + (ar^{2} + br + c)p = 0$$

Hence ap'' = 0 and we may choose p(t) = t.

Question: all 3 cases $\exists y_1(t), y_2(t)$

 $y_1 \neq \text{constant } y_2(t)$

Are there solutions not of the form $c_1y_1(t) + c_2y_2(t)$?

Ans

$$\begin{cases} ay'' + by' + cy = 0 \\ y(t_0) = y_0 \\ y'(t_0) = y_0 \end{cases}$$

has exactly one solution.

Eg
$$e^{r_1 t}$$
, $e^{r_2 t}$, $r_1 \neq r_2 \in \mathbb{R}$

If another solution $y_*(t)$

Can we find c_1 , c_2

$$\begin{cases} c_1 y_1(0) + c_2 y_2(0) = y_*(0) \\ c_1 y_1'(0) + c_2 y_2'(0) = y_*'(0) \end{cases}$$

If we can find c_1 , c_2

$$\Rightarrow \begin{cases} c_1 y_1(t) + c_2 y_2(t) & \text{have the same } y(0) \text{ and } y'(0) \\ y_*(t) & \end{cases}$$

From uniqueness $\Rightarrow y_*(t) = c_1 y_1(t) + c_2 y_2(t)$

$$y_1(0) = 1$$
 $y_2(0) = 1$
 $y_1'(0) = r_1$ $y_2'(0) = r_2 + r_1$ $\Rightarrow c_1, c_2 \text{ exists}.$

2nd Order Linear ODE

(1) Homogeneous ODE

$$y'' + p(t) y' + q(t) y = 0$$

Existence of linearly independent solution

Consider $ar^2 + br + c = 0$

3 cases

case (1): 2 real roots
$$r_1 \neq r_2$$

$$\Rightarrow c_1 e^{r_1 t} + c_2 e^{r_2 t} \text{ the solutions}$$

case (2): multiple real roots
$$r, r$$

$$\Rightarrow c_1 e^{rt} + c_2 t e^{rt} \quad \forall c_1, c_2$$

case (3): 2 complex conjugate roots
$$\alpha \pm i \beta \qquad \alpha, \beta \in \mathbb{R} \quad \beta \neq 0$$

$$\Rightarrow c_1 e^{\alpha t} \cos \beta t + c_2 e^{\alpha t} \sin \beta t \qquad \forall c_1, c_2.$$

Given $y_1(t)$, $y_2(t)$ 2 linear indep solution

homogeneous 2nd order ODE

How to construct solution of

$$(\star\star) \begin{cases} ay'' + by' + cy = 0 \\ y(0) = y_0 \\ y'(0) = y'_0 \end{cases}$$

Ans: Find $c_1, c_2 \in \mathbb{R}$ s.t.

$$(\star) \begin{cases} c_1 y_1(0) + c_2 y_2(0) = y_0 \\ c_1 y_1'(0) + c_2 y_2'(0) = y_0' \end{cases}$$

 $\Rightarrow c_1 y_1(t) + c_2 y_2(t)$ is the solution.

 (\star) has a solution

given y_0 , y'_0 , can always find unique c_1 , c_2 .

iff
$$\begin{vmatrix} y_1(0) & y_2(0) \\ y_1'(0) & y_2'(0) \end{vmatrix} \neq 0$$

i.e.
$$\begin{pmatrix} y_1(t) \\ y_1'(t) \end{pmatrix} \begin{pmatrix} y_2(t) \\ y_2'(t) \end{pmatrix}$$
 are linear indep

in \mathbb{R}^2 at t = 0.

Definition: $y_1(t), y_2(t)$ are linearly dependent

iff
$$\exists c_1, c_2 \in \mathbb{R}$$
 s.t. $c_1 y_1(t) + c_2 y_2(t) \equiv 0$ for all $t \in (\alpha, \beta)$.

Linear independent \Leftrightarrow NOT linear dependent .

Proposition: $y_1(t) = c y_2(t)$

$$\Rightarrow \left| \begin{array}{cc} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{array} \right| = 0$$

$$\Rightarrow \left| \begin{array}{cc} y_1(0) & y_2(0) \\ y_1'(0) & y_2'(0) \end{array} \right| = 0$$

Theorem : p, q continuous on (α, β)

 y_1, y_2 are solutions of y'' + p(t)y' + q(t)y = 0

$$\begin{vmatrix} y_1(0) & y_2(0) \\ y'_1(0) & y'_2(0) \end{vmatrix} = 0 \iff \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix} = 0$$

 $\forall t \in (\alpha, \beta) \quad 0 \in (\alpha, \beta)$

Define
$$w(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix}$$

$$\Rightarrow w'(t) = \begin{vmatrix} y_1'(t) & y_2'(t) \\ y_1'(t) & y_2'(t) \end{vmatrix} + \begin{vmatrix} y_1(t) & y_2(t) \\ y_1''(t) & y_2''(t) \end{vmatrix}$$

$$\Rightarrow w'(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ -py'_1 - qy_1 & -py'_2 - qy_2 \end{vmatrix} = -p(t) w(t)$$

$$\therefore w(t) = w(0) \exp\left(-\int_0^t p(s) \, ds\right).$$

$$w(t) = 0 \Leftrightarrow w(0) = 0$$

Corollary: If $y_1(t)$, $y_2(t)$ are two solutions of ay'' + by' + cy = 0 with

$$\left| \begin{array}{cc} y_1(0) & y_2(0) \\ y_1'(0) & y_2'(0) \end{array} \right| \neq 0$$

Then the solution to $(\star\star)$ is uniquely given by (\star) .

Proof: The existence has been done, $: c_1 y_1(t) + c_2 y_2(t)$ satisfies $(\star\star)$

And the uniqueness is equivalent to

$$(\star \star \star) \begin{cases} ay'' + by' + cy = 0 \\ y(0) = y'(0) = 0 \end{cases}$$
 implies $y(t) = 0$.

Because if $y_A(t)$ and $y_B(t)$ both solve $(\star\star)$, then y_A-y_B solve $(\star\star\star)$

Why is $(\star \star \star)$ true?

Consider
$$w_1(t) = \begin{vmatrix} y_1(t) & y_1(t) \\ y'(t) & y'(t) \end{vmatrix}$$
 and $w_2(t) = \begin{vmatrix} y_2(t) & y_2(t) \\ y'(t) & y'(t) \end{vmatrix}$

Since
$$y(0) = y'(0) = 0 \Rightarrow w_1(0) = w_2(0) = 0$$

$$\Rightarrow w_1(0) = w_2(0) = 0$$

i.e.
$$\begin{pmatrix} y(t) \\ y'(t) \end{pmatrix}$$
 is linearly dependent with both

$$\begin{pmatrix} y_1(t) \\ y_1'(t) \end{pmatrix}$$
 and $\begin{pmatrix} y_2(t) \\ y_2'(t) \end{pmatrix}$. Therefore, $y(t) = 0$, $y'(t) = 0$

Example

$$\begin{cases} y'' + k^2 y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases} - (1) \text{ and } \begin{cases} y'' + k^2 y = 0 \\ y(0) = 0 \\ y'(0) = 1 \end{cases} - (2)$$

$$(1): y(t) = \cos kt$$

$$(2): y(t) = \frac{1}{k}\sin kt$$

In general

$$\begin{cases} y'' + k^2 y = 0 \\ y(0) = A \\ y'(0) = B \end{cases}$$
$$\Rightarrow y(t) = A \cos kt + B \frac{1}{k} \sin kt$$

Remark

"The existence of two linear indep. \Rightarrow unique" is also valid for $y''+p\left(t\right)y+q(t)y=0$.

But "existence of Two linear indep. solutions" was not proved in class.

Example: Solve the following initial value problem

$$\begin{cases} y'' - k^2 y = 0 \\ y(0) = A \\ y'(0) = B \end{cases}$$

First note that $y'' - k^2y = 0$ has a family of solutions $y = c_1e^{kt} + c_2e^{-kt}$. According

to the initial condition, we have

$$A = y(0) = c_1 + c_2$$

 $B = y'(0) = c_1k - c_2k$

Hence, $c_1 = (Ak + B)/2k$ and $c_2 = (Ak - B)/2k$.

Inhomogeneous 2nd Order ODE

Suppose $y_1(t)$, $y_2(t)$ are two linear indep solutions in the case of g(t) = 0. Then

$$\begin{cases} y'' + p(t)y' + q(t)y = g(t) \\ y(0) = y_0, y'(0) = y'_0 \end{cases}$$

has a solution of the form

$$y = c_1 y_1(t) + c_2 y_2(t) + Y(t),$$

where $c_1y_1 + c_2y_2$ is the solution to the homogeneous initial value problem

$$\begin{cases} y'' + py' + qy = 0 \\ y(0) = y_0, \quad y'(0) = y'_0 \end{cases}$$

and Y(t) is the solution to the equation

$$\begin{cases} y'' + py' + qy = g(t) \\ y(0) = 0, \quad y'(0) = 0 \end{cases}$$

Remark Given $(1) \Rightarrow$ solution to (2) is unique, same proof as before.

Remark If given Y(t)

$$\left\{ \begin{array}{l} Y'' + pY' + qY = g \\ Y(0) = A \qquad Y'(0) = B \end{array} \right.$$

 \Rightarrow solution to (2) is given by $c_1y_1(t) + c_2y_2(t) + Y(t)$.

Inhomogeneous 2nd Order Linear ODE

$$\begin{cases} y'' + p(t)y' + q(t)y = g(t) - - - - (1) \\ y(t_0) = y_0 \quad y'(t_0) = y'_0 \end{cases}$$

For homogeneous ODE

$$y'' + p(t)y' + q(t)y = 0 - - - (2)$$

 $\exists y_1(t), y_2(t)$ is linear independent solutions

i.e.
$$w(y_1, y_2) \neq 0 \ (\forall t)$$

$$\left|\begin{array}{cc} y_1 & y_2 \\ y_1' & y_2' \end{array}\right| (t)$$

$$w' + pw = 0$$

such that all solutions of (2) is of the $c_1y_1(t) + c_2y_2(t)$

 $y_1(t)$, $y_2(t)$ can be explicitly found for the constant coefficient case. For the general case, we only know the existence of $y_1(t)$, $y_2(t)$ from theorem of the solution to (1) is unique.

We can decompose the solution as $y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$ where y_1 , y_2 are linear independent solutions of (2), Y(t) is any solution to y'' + py' + qy = g. c_1 , c_2 are chosen so that $y(t_0) = y_0$, $y'(t_0) = y'_0$.

Next, we introduce some methods that picks a Y(t) (special solution) in terms of $y_1(t)$ and $y_2(t)$.

- (a) guess (method of undetermined coefficient)
- (b) variation of parameter.

Variation of Parameter

Try $y(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$ with u_1 , u_2 to be determined. There are some

freedom in choosing u_1 , u_2 . Put them into y'' + p(t)y' + q(t)y = g(t), we obtain

$$y'' + py' + qy = u_1''y_1 + u_2''y_2 + 2u_1'y_1' + 2u_2'y_2' + u_1y_1'' + u_2y_2''$$
$$+p(u_1'y_1 + u_2'y_2 + u_1y_1' + u_2y_2') + q(u_1y_1 + u_2y_2)$$
$$= g(t)$$

We impose $u_1'y_1 + u_2'y_2 = 0 - - - (1)$

$$\Rightarrow u_1'y_1' + u_2'y_2' = g(t) - - - - (2)$$

$$\Rightarrow \begin{cases} u_1'y_1 + u_2'y_2 = 0 \\ u_1'y_1' + u_2'y_2' = g(t) \end{cases}$$

solve for u'_1, u'_2

$$u'_1(t) = \frac{-y_2(t)g(t)}{w(y_1, y_2)(t)}$$
 and $u'_2(t) = \frac{y_1(t)g(t)}{w(y_1, y_2)(t)}$

$$u_1(t) = \int_{t_0}^t \frac{-y_2 g}{w} ds$$
 and $u_2(t) = \int_{t_0}^t \frac{-y_1 g}{w} ds$

$$\Rightarrow Y(t_0) = u_1(t_0)y_1(t_0) + u_2(t_0)y_2(t_0) = 0$$

$$Y'(t_0) = (u_1'y_1 + u_2'y_2)(t_0) + (u_1y_1' + u_2y_2')(t_0) = 0$$

$$\Rightarrow \begin{cases} Y'' + pY' + qY = g(t) \\ Y(t_0) = 0 \qquad Y'(t_0) = 0 \end{cases}$$

Find a particular solution of $y'' + 2y' - 4y = 3e^{2t} + 2\sin t - 8e^t\cos 2t$

Consider y'' + 3y' + 4y

 $y_1(t)$, $y_2(t)$ are the solutions of y'' - 3y' - 4y = 0

$$\Rightarrow y_1(t) = e^{4t}, y_2(t) + e^{-t}$$

By the linear superposition, it suffices to find the solutions of

$$y'' - 3y' - 4y = \begin{cases} 3e^{2t} \\ 2\sin t \\ -8e^t \cos 2t \end{cases}.$$

$$(1) y'' - 3y' - 4y = 3e^{2t}$$

$$2 \neq r_1, r_2$$

$$(e^{2t})'' - 3(e^{2t})' - 4(e^{2t}) = 4e^{2t} - 6e^{2t} - 4e^{2t} \neq 0$$

Try
$$y = Ae^{2t}$$

$$\Rightarrow 4Ae^{2t} - 6Ae^{2t} - 4Ae^{2t} = 3e^{2t}$$

$$-6A = 3 \Rightarrow A = -1/2$$

$$\Rightarrow y(t) = -1/2e^{2t}$$

(2)
$$y'' - 3y' - 4y = 2\sin t = 2\operatorname{Im} e^{it}$$

Try $y = A\cos t + B\sin t$ (Equivalent to try $(C + Di)e^{it}$) as follow:

$$y'' - 3y' - 4y$$

$$= -B\sin t - A\cos t + 3A\sin t - 3B\cos t - 4A\cos t - 4B\sin t$$

 $= 2\sin t$

$$\begin{cases}
-B + 3A - 4B = 2 \\
-A - 3B - 4A = 0
\end{cases} \Rightarrow \begin{cases}
3A - 5B = 2 \\
5A + 3B = 0
\end{cases} \Rightarrow \begin{cases}
A = \frac{6}{34} \\
B = \frac{-10}{34}
\end{cases}$$

$$\begin{pmatrix} -A \\ -B \end{pmatrix} - 3 \begin{pmatrix} B \\ -A \end{pmatrix} - 4 \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

$$(C+Di)(e^{it})'' - 3(e^{it})' - 4(e^{it})$$

$$= (C+Di)(-5-3i)e^{it}$$

$$= (-5C - 3Ci - 5Di + 3D)e^{it}$$

$$= (-5C + 3D + i(-3i - 5D))e^{it}$$

$$= 2 \operatorname{Im} e^{it}$$

$$\Rightarrow \begin{cases} -5C + 3D = 2 \\ -3C - 5D = 0 \end{cases} \Rightarrow \begin{cases} C = -\frac{10}{34} = \frac{-5}{17} \\ D = \frac{6}{34} = \frac{3}{17} \end{cases}$$

(3)
$$y'' - 3y' - 4y = -8e^t \cos 2t = -8\operatorname{Re} e^{(1+2i)t}$$

$$\lambda \left(\left(e^{(1+2i)t} \right)'' - 3 \left(e^{(1+2i)t} \right)' - 4 \left(e^{(1+2i)t} \right) \right)$$

$$= \lambda (-2i - 10) e^{(1+2i)t} = -8 e^{(1+2i)t}$$

$$\Rightarrow \lambda = \frac{-8}{-2i-10}$$

$$\Rightarrow$$
 take $y = \operatorname{Re}(\lambda e^{(1+2i)t})$

Example: To find a particular solution of $y'' + 4y = 3\cos(2t)$, $(= 3 \operatorname{Re} e^{2it})$.

First we solve $r^2 + 4 = 0$, and obtain $r = \pm 2i$.

Next, try $\lambda t e^{2it}$ as follow:

Take Re (λte^{2it})

$$y'' - 4y' + 4y = e^{2t}$$

Try
$$A t^2 e^{2t}$$

Consider:

$$\begin{cases} ay'' + by' + cy = ke^{qt} \\ aq^2 + bq + c = 0 \end{cases}$$

Try
$$p(t)e^{qt}$$

$$2aq + b \neq 0 \Leftrightarrow q = r_1 \neq r_2$$

$$2aq + b = 0 \Leftrightarrow r_1 = r_2$$

$$(p(t) e^{qt})'' + (p(t) e^{qt})' + (p(t) e^{qt})$$

$$a \begin{pmatrix} p'' \\ +2p'q \\ +pq^2 \end{pmatrix} e^{qt} + b \begin{pmatrix} p' \\ pq \end{pmatrix} e^{qt} + c (p) e^{qt}$$

$$= p''ae^{qt} + p'(2aq + b)e^{qt} + p(aq^2 + bq + c)e^{qt}$$
$$= ke^{qt}$$

There are two possibility:

- 1. If 2aq + b = 0, then we let p'' = k/a.
- 2. If $2aq + b \neq 0$, then we let p'' = 0 and p' = k/(2aq + b).

Example: To solve the differential equation $y'' + 3y' + 2y = t^k$, we may try the

polynomial
$$y(t) = a_k t^k + a_{k-1} t^{k-1} + \dots + a_0$$
. Then

$$a_{k}k(k-1)t^{k-2} + a_{k-1}(k-1)(k-2)t^{k-3} + \cdots$$

$$+3\left(a_{k}kt^{k-1} + a_{k-1}(k-1)t^{k-2} + a_{k-2}(k-2)t^{k-3} + \cdots\right)$$

$$+2\left(a_{k}t^{k} + a_{k-1}t^{k-1} + a_{k-2}t^{k-2} + \cdots\right) = t^{k}.$$

Therefore,

$$2a_k = 1$$

 $3a_k k + 2a_{k-1} = 0$
 $a_k k(k-1) + 3a_{k-1}(k-1) + 2a_{k-2} = 0$
:

Question: What can we do in the case of $y'' + 3y' = t^k + \cdots$?

Answer: Try the polynomial $y(t) = a_{k+1} t^{k+1} + a_k t^k + \cdots$

Remark : To solve $y'' = t^k + \cdots$, we integrate on both sides directly.

Undamped Osoillations

Consider the second order differential equation

$$mu'' + ku = 0,$$

for some positive constants m, k.

$$(F = ma)$$

$$u'' + \frac{k}{m}u = 0$$

$$u = A\cos\left(\sqrt{\frac{k}{m}}t\right) + B\sin\left(\sqrt{\frac{k}{m}}t\right) = \sqrt{A^2 + B^2}\cos\left(\sqrt{\frac{k}{m}}t + \delta_0\right).$$
$$T = \frac{2\pi}{\sqrt{k/m}}$$

Damped Oscillations

$$mu'' + \nu u' + ku = 0, \quad \nu > 0 \text{ (fixed)}$$

The solution are given by $c_1e^{r_1t} + c_2e^{r_2t}$

$$r_1\,,\,r_2:\,mr^2+\nu r+k=0$$

$$r_1\,,r_2=\frac{-\nu\pm\sqrt{\nu^2-4mk}}{2m}$$

There are 3 cases to be discussed:

1. If
$$\nu^2 - 4mk > 0$$
, then $r_1 < 0$, $r_2 < 0$, and $r_1 \neq r_2$.

2. If
$$\nu^2 - 4mk = 0$$
, then $r_1 = r_2 = \frac{-\nu}{2m} < 0$.

3. If
$$\nu^2 - 4mk < 0$$
, then $\operatorname{Re} r_1 = \operatorname{Re} r_2 = \frac{-\nu}{2m} < 0$.

Since $u(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$, i.e.

$$u = e^{-\nu t/2m} \left(c_1 \cos(\frac{\sqrt{4mk - \nu^2}}{2m}t) + c_2 \sin(\frac{\sqrt{4mk - \nu^2}}{2m}t) \right),$$

we have $\lim_{t\to\infty} u(t) = 0$ for any initial data u(0), u'(0).

REMARK:

1. In the case of $r_1 \neq r_2 < 0$, say $r_1 < r_2 < 0$, we have $u = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.

$$c_1, c_2 = ?$$

$$\begin{cases} u(0) = c_1 + c_2 \\ u'(0) = r_1 c_1 + r_2 c_2 \end{cases}$$
Therefore, $c_1 = \frac{u'(0) - r_2 u(0)}{r_1 - r_2}$, and $c_2 = \frac{u'(0) - r_1 u(0)}{r_2 - r_1}$.

2. In the case of $r_1 = r_2 < 0$, we have $u(t) = c_1 e^{rt} + c_2 t e^{rt}$.

Undamped Oscillations

$$mu'' + ku = F_0 \cos \omega t$$

Let
$$\omega_0 = \sqrt{k/m}$$

$$u(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + \frac{F_0}{k - m\omega^2} \cos \omega t \ (\omega^2 \neq \omega_0^2 \Rightarrow k - m\omega^2 \neq 0)$$

$$c_1, c_2 = ?$$

$$\begin{cases} c_1 + \frac{F_0}{k - m\omega^2} = u(0) \\ \omega_0 c_2 = u'(0) \end{cases}$$

$$u = \sqrt{c_1^2 + c_2^2} \cos(\omega_0 t + \delta) + \frac{F_0}{k - m\omega^2} \cos\omega t$$

As
$$\omega \sim \omega_0$$

$$\begin{cases} \omega_0 = \frac{\omega + \omega_0}{2} - \frac{\omega - \omega_0}{2} \\ \omega = \frac{\omega + \omega_0}{2} + \frac{\omega - \omega_0}{2} \end{cases} \text{ implies } \begin{cases} \frac{\omega + \omega_0}{2} \sim \omega_0 \\ \frac{\omega - \omega_0}{2} \sim 0 \end{cases}$$

For simplicity, suppose u'(0) = 0 $(c_2 = 0) \Rightarrow \delta = 0$

$$u = c_1 \cos \omega_0 t + \frac{F_0}{k - m\omega^2} \cos \omega t$$

Let
$$A = \frac{\omega + \omega_0}{2}t$$
, and $B = \frac{\omega - \omega_0}{2}t$

$$\Rightarrow u = c_1(\cos A \cos B + \sin A \sin B) + \frac{F_0}{k - m\omega^2}(\cos A \cos B - \sin A \sin B)$$

$$= \begin{cases} \frac{2F_0}{k - m\omega^2} \cos(\frac{\omega + \omega_0}{2}t) \cos(\frac{\omega - \omega_0}{2}t) & c_1 = \frac{F_0}{k - m\omega^2} \\ \frac{-2F_0}{k - m\omega^2} \sin(\frac{\omega + \omega_0}{2}t) \sin(\frac{\omega - \omega_0}{2}t) & c_1 = \frac{-F_0}{k - m\omega^2} \end{cases}$$

Recall: $mu'' + ku = F_0 \cos \omega t$

$$u(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos \omega t$$

$$\omega_0^2 = \frac{k}{m}$$

If
$$u(0) = u'(0) = 0$$
, $c_2 = 0$, $c_1 = \frac{-F_0}{m(\omega_0^2 - \omega^2)}$

then

$$u(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} (\cos \omega t - \cos \omega_0 t)$$
$$= \frac{-2F_0}{m(\omega_0^2 - \omega^2)} \cdot \sin(\frac{\omega + \omega_0}{2}t) \cdot \sin(\frac{\omega - \omega_0}{2}t).$$

In general,

$$u(t) = A\cos(\omega_0 t + \delta) + B\cos(\omega t)$$

$$= A(\cos\alpha\cos\beta + \sin\alpha\sin\beta) + B(\cos\alpha\cos\beta - \sin\alpha\sin\beta)$$

$$= (A+B)\cos\alpha\cos\beta + (A-B)\sin\alpha\sin\beta$$

$$= C\cos(\beta + \varepsilon).$$

Homework: What is C and ε ?

Resonance ($\omega = \omega_0$)

$$mu'' + ku = F_0 \cos \omega_0 t$$

$$u = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + \text{Re}(\frac{F_0}{2mi\omega_0} t e^{i\omega_0 t}) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + c_3 t \sin \omega_0 t$$

Try
$$u_p = p(t)e^{i\omega_0 t}$$
 s.t. $mu_p'' + ku_p = F_0 e^{i\omega_0 t}$

Take $Re(u_p)$

$$mu_p'' = m(p'' + 2p'i\omega_0 - \omega_0^2 p)e^{i\omega_0 t} + kp e^{i\omega_0 t} = F_0 e^{i\omega_0 t}$$

Hence $mp'' + 2mp'i\omega_0 = F_0$

and we get
$$p = \frac{F_0}{2mi\omega_0}t$$

Take
$$\operatorname{Re}(u_p) = \frac{F_0}{2m\omega_0}t \cdot \sin(\omega_0 t),$$

$$G(t,s) = \frac{\sin(\omega_0(t-s))}{\omega_0}$$

$$u_p(t) = \int_0^t \frac{1}{\omega_0} \sin(\omega_0(t-s)) \frac{F_0}{m} \cos(\omega_0 s) ds$$

$$mu'' + ru' + ku = F_0 \cos \omega_0 t$$

$$u(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} + c_3 \cos(\omega_0 t + \delta) (\omega_0 \neq r_1, r_2)$$

$$\begin{cases} \operatorname{Re} r_1 < 0 \\ \operatorname{Re} r_2 < 0 \end{cases} \lim_{t \to \infty} (c_1 e^{r_1 t} + c_2 e^{r_2 t}) = 0$$

$$\mathrm{HW}: (1)\ u'' - 3u' + 2u = \cos t\,,\,\mathrm{find\ a\ particular\ solution}.$$

(2)
$$u'' - 2u' + u = \cos t\,,$$
 find a particular solution.