Subject : Differential Equation

Textbook : Boyce & Diprimai ; Elementary Differential Equation and Boundary Value Problems

Web Page : math2.math.nthu.edu.tw/~wangwc

Chapter 1 Introduction

What is an Ordinary Differential Equation ?

What is an Partial Differential Equation ?

Find u(t) such that $F(u, u', u'', \dots, u^{(n)}, t) = 0$. ODE : for example, $\frac{du}{dt} = u$. **NOT** an ODE : $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

More often ,we will consider ODE of the form

$$\frac{du}{dt} = f(t, u) \text{ with a given } f, \text{ or}$$
$$\frac{d^{(n)}u}{dt^{(n)}} = f\left(t, u, \frac{du}{dt}, \dots, \frac{d^{(n-1)}u}{dt^{(n-1)}}\right).$$

We use the following notation :

$$\frac{du}{dt}, u', \dot{u}, u'(t), \dot{u}(t); \\ \frac{d^{(2)}u}{dt^{(2)}}, u'', \ddot{u}(t);$$

sometimes we use $y(t), \dot{y}, y'$; or $y(x), \dot{y}, y'$.

Remark : ODE with parameters u(t, m)

$$\begin{split} &\frac{\partial u}{\partial t}=f(t,u,m),\\ &\frac{\partial u}{\partial t}=\frac{du}{dt}\;,\,m\text{ is NOT involved in differentiation}. \end{split}$$

Order : the highest number of derivatives involved.

System of ODE : for example

$$\left\{ \begin{array}{l} \frac{du}{dt} = f(u,v) \\ \frac{dv}{dt} = g(u,v) \end{array} \right. \label{eq:du_dist}$$

Chapter 2 First Order Differential Equation

1st order linear ODE :

$$\frac{du}{dt} = f(t, u)$$

If f(t, u) = p(t)u(t) + g(t) is linear in u,

then $\frac{du}{dt} = pu + g$ is a linear 1st order ODE.

I. Direct integration :

Eg:
$$\frac{dy}{dx} = \frac{-y}{2} + \frac{3}{2}$$

 $\Rightarrow \frac{dy}{dx} = \frac{3-y}{2}$, or $\frac{dy}{3-y} = \frac{dx}{2}$. \cdots (*)

Integrate both side, we get

$$\int \frac{dy}{3-y} = \int \frac{dx}{2}.$$

Hence $-\ln|3-y| = \frac{x}{2} + c.$

II. Integration factor :

$$\frac{dy}{dx} + \frac{y}{2} = \frac{3}{2}$$
$$\mu(x)\frac{dy}{dx} + \mu(x)\frac{y}{2} = \frac{3}{2}\mu(x)$$

[Chain Rule : $(fg)^\prime = f^\prime g + fg^\prime.$]

Take $\mu(x) = \exp(\frac{x}{2})$, then $\frac{du}{dx} = \frac{1}{2}\exp(\frac{x}{2}) = \frac{1}{2}u(x)$.

It follows that

$$\exp\left(\frac{x}{2}\right)\frac{dy}{dx} + \left\{\frac{d}{dx}\exp\left(\frac{x}{2}\right)\right\}y = \frac{3}{2}\exp\left(\frac{x}{2}\right),$$

or

$$\left\{\exp\left(\frac{x}{2}\right)y\right\}' = \frac{3}{2}\exp\left(\frac{x}{2}\right).$$

Integrate both sides, we get $\exp(\frac{x}{2}) y = 3 \exp(\frac{x}{2}) + c$.

Therefore
$$y(x) = 3 + c \exp(\frac{-x}{2})$$
.

In general, a possible way to solve the first order linear equation,

$$y' + p(x)y = g(x)$$

is to multiply it by a suitable integrating factor $\mu(x)$. Then we have

$$\mu(x)y' + \mu(x)p(x)y = \mu(x)g(x).$$

Now we want to choose $\mu(x)$ so that $\mu'(x) = p(x)\mu(x)$. Indeed,

$$\ln|\mu(x)| = \int p(x)dx + c$$

or

$$\mu(x) = c \exp\left\{\int p(x)dx\right\}.$$

Example:

$$\begin{cases} y' + ky = 0\\ y(0) = y_0, & \text{where } k, y_0 \text{ are some constants.} \end{cases}$$
(1)

• Method 1 : Direct integration

Write the equation as $\frac{y'}{y} = -k$, then integrate both sides.

• Method 2 : Integrating factor

Choose $\mu(x) = e^{kx}$, then $e^{kx}y' + ke^{kx}y = 0$, or $(e^{kx}y)' = 0$. Hence $y = ce^{-kx}$. And by $y(0) = y_0$, we have $c = y_0$.

• Remark: Suppose

$$\begin{cases} y'_1 + ky_1 = 0, \\ y_1(x_0) = y_1. \end{cases} \text{ and } \begin{cases} y'_2 + ky_2 = g, \\ y_2(x_0) = 0. \end{cases}$$

Then $(y_1 + y_2)$ satisfies the following equation :

$$\begin{cases} y' + ky = g, \\ y(x_0) = y_1. \end{cases}$$

• Eq.(1) has the solution $y(x) = y_0 e^{-kx}$. Then $y(x) \to 0$ as $x \to +\infty$ in the case of k > 0. And $y(x) \to 0$ as $x \to -\infty$ in the case of k < 0. Suppose y' + ky = q for some constants k, q. Then

$$y' + k\left(y - \frac{q}{k}\right) = 0,$$
 or $\left(y - \frac{q}{k}\right)' + k\left(y - \frac{q}{k}\right) = 0.$

Hence

$$\left(y(x) - \frac{q}{k}\right) = \left(y(x_0) - \frac{q}{k}\right)e^{-k(x-x_0)}.$$

If k > 0 (k < 0), as $x \to +\infty$ $(-\infty)$, we have $y(x) \to \frac{q}{k}$. The solution of $k(y - \frac{q}{k}) = 0$ is called the equilibrium state. The equilibrium state of the equation y' = f(y) is the set $\{y \mid f(y) = 0\}$.

Example:

$$\begin{cases} xy' + ky = 4x^2, \ k \text{ is a constant} \\ y(1) = 2 \end{cases}$$

Sol: We first find the integrating factor

$$\int \frac{k}{x} dx = k \ln|x| + c.$$

Multiply by $e^{k \ln |x|+c} = e^c (e^{\ln |x|})^k = |x|^k = x^k$, where we assume x > 0, then

$$x^{k}y' + kx^{k-1}y = 4x^{k+1},$$
 or $(x^{k}y)' = 4x^{k+1}$

Hence $x^k y = \frac{4x^{k+2}}{k+2} + c$; i.e. $y = \frac{4x^2}{k+2} + \frac{c}{x^k}$. By the initial condition y(1) = 2, we get $c = \frac{2k}{k+2}$.

Generalizations :

Given y' = f(y), we have

$$\frac{1}{f(y)}\frac{dy}{dx} = 1.$$

If we can find G(y) such that $G'(x) = \frac{1}{f(x)}$, then

$$\frac{d}{dx}G(y(x)) = 1$$

and hence

$$G(y(x)) = x + c.$$

The solution is implicitly defined by G.

Generalize to separable case :

Consider the equation

$$M(x) + N(y)\frac{dy}{dx} = 0$$

If we can find $H'_1(x) = M(x)$ and $H'_2(y) = N(y)$, then

$$\frac{d}{dx}(H_1(x) + H_2(y(x))) = 0$$

The solution is implicitly defined by

$$H_1(x) + H_2(y(x)) = c$$

Example : Consider the differential equation

$$\begin{cases} y' = \frac{y \cos x}{1+2y^2} \\ y(0) = 1. \end{cases}$$

Sol:

$$\left(\frac{1+2y^2}{y}\right)y' = \cos x, \qquad \Longrightarrow \left(\frac{1}{y}+2y\right)y' = \cos x$$

Then $(\ln |y| + y^2) = \sin x + c$, and c = 1 by the initial condition y(0) = 1. Hence the solution y(x) satisfies the relation $\ln |y| + y^2 = \sin x + 1$.

Integral curve

From the equation $\frac{dy}{dx} = F(x, y)$, given (x_0, y_0) , we get the slope $F(x_0, y_0)$. An integral curve is the curve y = f(x) satisfies $\frac{dy}{dx} = F(x, f(x))$. But in some equation of the form $H_1(x) + H_2(y) = c$ (y is implicitly defined), the solution "y = f(x)" may not exists for all x.

 $F(x_0, y_0) = 0 \Leftrightarrow \text{tangent is horizontal.}$

 $F(x_0, y_0) = \infty \Leftrightarrow \text{tangent is vertical.}$

Equilibrium :

In the equation y' = f(y), we say y_0 is an equilibrium iff $f(y_0) = 0$.

Existence and Uniqueness of solutions

Consider the equation

$$\begin{cases} \frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y-1)}, \\ y(0) = 1. \end{cases}$$

We have $2(y-1)dy = (3x^2 + 4x + 2)dx$. Integrate both sides, we obtain

$$y^2 - 2y = x^3 + 2x^2 + 2x + c$$
, and $c = -1$.

Hence $y = 1 \pm \sqrt{x^3 + 2x^2 + 2x - 1}$, there are two solutions.

Example 2:

Consider

$$\begin{cases} y' = y^{1/3} \\ y(x_0) = 0 \end{cases}$$

Then $\frac{2}{3}y^{-1/3}y' = \frac{2}{3}$ or $(y^{2/3}) = \frac{2}{3}$.

Hence $y^{2/3} = \frac{2}{3}x + c$, and $c = -\frac{2}{3}x_0$ by the initial value $y(x_0) = 0$.

Consequently, $y = \pm [\frac{2}{3}(x - x_0)]^{2/3}$ for $x \ge x_0$.

If $x_0 = 0$, we get another solution $y \equiv 0$.

Example 3 :

Consider

$$\begin{cases} y' = y^2, \\ y(0) = y_0, \text{ where } y_0 \neq 0 \text{ is a constant.} \end{cases}$$

Then $-y^{-2}y' = -1$, or $(\frac{1}{y})' = -1$. Therefore

$$\frac{1}{y} = -x + \frac{1}{y_0}$$
, or $y(x) = \frac{y_0}{1 - y_0 x}$

- If $y_0 > 0$, then $y(x) \to +\infty$ as $x \to (\frac{1}{y_0})^-$, and the solution exists only on $(-\infty, \frac{1}{y_0})$.
- If $y_0 = 0$, then $y \equiv 0$ is the solution defined on the whole real line.

• If $y_0 < 0$, then $y(x) \to -\infty$ as $x \to (\frac{1}{y_0})^+$, and the solution exists only on $(\frac{1}{y_0}, \infty)$.

These nonuniqueness or non-existence will not happen to linear first order ODE's.

Theorem: If p(t), g(t) are continuous on $\alpha < t < \beta$ and $t_0 \in (\alpha, \beta)$, then there exists the unique solution on (α, β) for the equation

$$\begin{cases} y' + p(t)y = g(t), \\ y(t_0) = y_0. \end{cases}$$

•

Moreover, the solution is given by

$$y(t) = \frac{1}{\mu(t)} \left[\mu(t_0) y(t_0) + \int_{t_0}^t \mu(s) g(s) \, \mathrm{d}s \right],$$

where $\mu(t) = \exp\{\int_{t_0}^t p(s) ds\}.$

Proof:

Let
$$\mu(t) = \exp\{\int_{t_0}^t p(s) ds\}$$
 on (α, β) .

Then $\mu'(t) = p(t)\mu(t)$.

Multiply $\mu(t)$ on the both side of the equation, we get

$$\mu(t)y'(t) + p(t)\mu(t)y(t) = \mu(t)g(t).$$

That is

$$(\mu(t)y(t))' = \mu(t)g(t).$$

Hence

$$(\mu y)(t) = (\mu y)(t_0) + \int_{t_0}^t \mu(s)g(s) \,\mathrm{d}s,$$

and $y(t) = \frac{1}{\mu(t)} [\mu(t_0)y(t_0)] + \int_{t_0}^t \mu(s)g(s) \,\mathrm{d}s.$

Theorem : For nonlinear case

$$\begin{cases} y' = F(t, y) \\ y(t_0) = y_0. \end{cases}$$

If F and $\frac{\partial F}{\partial y}$ are continuous in a neighborhood of (t_0, y_0) then there exists unique solution on the neighborhood.

Asymptotic Stability of Equilibrium States

Recall : If y_0 is the only solution to f(y) = 0, and y' = f(y), then

$$\lim_{t \to \infty} y(t) = y_0, \quad \text{and} \quad \begin{cases} f(y) < 0, \text{ if } y > y_0; \\ f(y) > 0, \text{ if } y < y_0. \end{cases}$$

Growth rate proportional to population

Modeling with y' = h(y) y: Require $\begin{cases} h(y) \sim r, & \text{if } y \text{ is small}; \\ h(y) \text{ decrease as } y \text{ grows }; \\ h(y) < 0, & \text{when } y > k, & \text{for some constant} k. \end{cases}$

For example,

$$h(y) = r - \frac{r}{k}y = r\left(1 - \frac{1}{k}y\right),$$

i.e.
$$\begin{cases} y' = r(1 - \frac{y}{k})y;\\ y(0) = c. \end{cases}$$

Remark : this ODE is solvable by directly integrate $\frac{dy}{r(1-\frac{y}{k})y} = dt$. Logistic Growth

Qualitative analysis of $y' = r\left(1 - \frac{y}{k}\right)y$, (without solving it explicitly)

- 1. Equilibrium states are y = 0, and y = k.
- 2. if 0 < y < k, then $r(1 \frac{y}{k})y > 0$.
- 3. if y > k, then $r(1 \frac{y}{k})y < 0$.

Thus y = k is an asymptotically stable equilibrium.

That is $\lim_{t \to \infty} y = k$, if |y(0) - k| is small.

But "0" is an unstable equilibrium state.

That is $\lim_{t\to\infty} y = 0$ only if y(0) = 0.

Threshold

Consider the equation

$$\frac{dy}{dt} = -r\Big(1 - \frac{y}{T}\Big)y,$$

where r, T are given positive constants.

1. y = 0 and y = T are the critical points, corresponding to the equilib-

rium solutions $y_1(t) = 0$ and $y_2(t) = T$.

- 2. If 0 < y < T, then $\frac{dy}{dt} < 0$, and y(t) decreases as t increases. Thus $y_1(t) = 0$ is an asymptotically stable equilibrium solution.
- 3. If y > T, then $\frac{dy}{dt} > 0$. Thus $y_2(t) = T$ is an unstable equilibrium solution.

From this, T is called threshold.

Threshold + Logistic

Consider $f(y) = -(1 - \frac{y}{T})(1 - \frac{y}{K})y$, (0 < T < K) then

 $1. \ y(0) < T \Longrightarrow \lim_{t \to \infty} y(t) = 0,$

2.
$$y(0) > T \Longrightarrow \lim_{t \to \infty} y(t) = K.$$

Exact Equations

Let the differential equation

$$M(x,y) + N(x,y)y' = 0$$
 (2)

be given. Suppose we can identify a function ψ such that

$$\psi_x(x,y) = M(x,y), \ \psi_y(x,y) = N(x,y),$$

and such that $\psi(x,y) = c$ defines $y = \phi(x)$ implicitly as a differentiable function of x.

Then

$$M(x,y) + N(x,y)y' = \psi_x(x,y) + \psi_y(x,y)y' = \frac{d}{dx}\psi(x,\phi(x))$$

and the equation becomes

$$\frac{d}{dx}\psi(x,\phi(x)) = 0.$$

In this case Eq.(2) is said to be an **exact** differential equation.

The solution is given implicitly by

$$\psi(x,y) = c,$$

for some constant c.

Theorem: Let $M, N \in C^1(\Omega), \Omega \in \mathbb{R}^2$ is simply connected. Then there exists a function $\psi(x, y)$ such that

$$\psi_x(x,y) = M(x,y); \ \psi_y(x,y) = N(x,y),$$

if and only if $M_y(x,y) = N_x(x,y)$.

Integrating Factors

Let us multiply the equation

$$M(x,y)dx + N(x,y)dy = 0$$

by a function μ and then try to choose μ so that

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0 \tag{3}$$

is exact. By the above Theorem, we need

$$(\mu M)_y = (\mu N)_x.$$

Hence, the integrating factor μ must satisfy the equation

$$M\mu_y - N\mu_x + \mu(M_y - N_x) = 0.$$

If such μ can be found, then Eq.(3) will be exact.

Remark: The solution μ may have more than one solution. But, unfortunately, μ is difficult to solve. The situations in which integrating factors can be found occur when μ is a function of only one of the variables x, y. Assume that $\mu = \mu(x)$, we have

$$(\mu M)_y = \mu M_y, \qquad (\mu N)_x = \mu N_x + N \frac{d\mu}{dx}.$$

Thus, $(\mu M)_y = (\mu N)_x$ is equivalent to

$$\frac{d\mu}{dx} = \left(\frac{M_y - N_x}{N}\right)\mu.$$
(4)

If $\frac{M_y - N_x}{M}$ is a function of x only, then $\mu(x)$ can be found by solving the 1st order linear equation (4).

14

Homework : Try $\mu = \mu(y)$.

Example : $(3xy + y^2) + (x^2 + xy)y' = 0$

Observe that

$$\frac{M_y(x,y) - N_x(x,y)}{N(x,y)} = \frac{1}{x}.$$

Thus, μ is a function of x only, and

$$\frac{d\mu}{dx} = \frac{\mu}{x}.$$

Hence

 $\mu(x) = x.$

Example : $(3x^2y + xy^2) + (x^2y + x^3)y' = 0$

Note that $M(x, y) = 3x^2y + xy^2$, $N(x, y) = x^2y + x^3$, and

$$M_y(x,y) = 3x^2 + 2xy = N_x(x,y).$$

Want to find $\psi(x, y)$ s.t. $\psi_y = x^2 y + x^3$ and $\psi_y = 3x^2 y + xy^2$. Hence $\psi(x, y) = \frac{x^2 y^2}{2} + x^2 y + F(x)$ and $\psi(x, y) = x^3 y + \frac{x^2 y^2}{2} + G(y)$. Therefore $\psi(x, y) = \frac{x^2 y^2}{2} + x^3 + \text{constant}$. Answer : $\frac{x^2 y(x)^2}{2} + x^3 y(x) = \text{constant}$.

Existence and Uniqueness

We first prove the **uniqueness** of the solution as follow :

Suppose the initial value problem

$$\begin{cases} y' = f(t, y) \\ y(t_0) = y_0 \end{cases}$$
(5)

has two solutions y_1 and y_2 .

Let $w(t) = y_1(t) - y_2(t)$, then

$$\begin{cases} y_1'(t) = f[t, y_1(t)], & y_1(t_0) = y_0; \\ y_2'(t) = f[t, y_2(t)], & y_2(t_0) = y_0. \end{cases}$$

and $w'(t) = f[t, y_1(t)] - f[t, y_2(t)]$, and $w(t_0) = 0$.

Hence

$$w(t) = \int_{t_0}^t \{f[s, y_1(s)] - f[s, y_2(s)]\} \,\mathrm{d}s,$$

and

$$|w(t)| \le \int_{t_0}^t |f(s, y_1) - f(s, y_2)| ds.$$

If df/dy is continuous,

$$\left|\frac{df}{dy}\right| \le M$$
 on the region $\Omega = \left\{(t, y) \left| |t - t_0| \le a, |y - y_0| \le b\right\},\$

and we have

$$\left| f(s,y_1) - f(s,y_2) \right| = \left| \int_{y_1}^{y_2} \frac{\partial f}{\partial y}(s,y) dy \right| \le M |y_1 - y_2|.$$

It follows that

$$|w(t)| \le M \int_{t_0}^t |w(s)| ds.$$

Define $U(t) = \int_{t_0}^t |w(s)| ds$, then

$$U(t) \ge 0, \text{ for } t \ge t_0 \tag{6}$$

On the other hand,

$$U'(t) \le |w(t)|,$$

and since $|w(t)| \leq M \int_{t_0}^t |w(s)| ds = MU(t)$, we have

$$U' \le MU$$
, or $U' - MU \le 0$.

Therefore,

$$(e^{-Mt}U)' \le 0$$
 for $t \ge t_0$.

Since $U(t_0) = 0$, we obtain

$$U(t) \le 0, \qquad \text{for } t \ge t_0. \tag{7}$$

by (6) and (7), $U(t) \equiv 0$; and hence

$$w(t) \equiv 0, \qquad \text{for } t \ge t_0 \text{ on } \Omega.$$

Homework: Show the same result for $t \leq t_0$ on Ω .

Theorem: If f and $\frac{\partial f}{\partial y}$ are continuous in a rectangle Ω , then there is some interval $|t - t_0| \leq h < a$ in which there exists a unique solution $y = \phi(t)$ of the initial value problem(5).

Existence of solution:

The method we use to find the solution is known as **Picard's iteration** method. First, let $y_0(t) = y_0$; and

$$y_1(t) = y_0 + \int_{t_0}^t f(s, y_0(s)) ds$$

Similarly, y_2 is obtained from y_1 :

$$y_2(t) = y_0 + \int_{t_0}^t f(s, y_1(s)) ds$$

and in general,

$$y_{n+1}(t) = y_0 + \int_{t_0}^t f(s, y_n(s)) ds.$$

In this manner we generate the sequence of functions $\{y_n \mid n = 0, 1, 2, \dots\}$.

- 1. All y_n 's exist on the rectangle $D = \left\{ (t, y) \left| |t t_0| \le h, |y y_0| \le b \right\}$, where $h = \min\{a, \frac{b}{m}\}$ and $M = \max_{(t,y)\in\Omega} |f(t, y)|$.
- 2. $y_n(t)$ converges.

We first estimate $|y_{n+1}(t) - y_n(t)|$ as follows:

$$\begin{aligned} \left| y_{n+1}(t) - y_n(t) \right| &\leq \int_{t_0}^t \left| f(s, y_n(s)) - f(s, y_{n-1}(s)) \right| ds \\ &\leq \int_{t_0}^t \int_{y_{n-1}(s)}^{y_n(s)} \left| \frac{\partial f}{\partial y}(s, \xi) \right| \xi ds \\ &\leq K \int_{t_0}^t \left| y_n(s) - y_{n-1}(s) \right| ds \end{aligned}$$

where $K = \max_{(t,y)\in\Omega} \left| \frac{\partial f}{\partial y}(t,y) \right|$. And hence

$$\begin{aligned} |y_1(t) - y_0(t)| &\leq M |t - t_0|, \\ |y_2(t) - y_1(t)| &\leq K \int_{t_0}^t M(s - t_0) ds = KM \frac{|t - t_0|^2}{2}, \\ |y_3(t) - y_2(t)| &\leq K \int_{t_0}^t KM(s - t_0)^2 ds = K^2 M \frac{|t - t_0|^3}{3!}, \\ &\vdots \\ |y_{n+1}(t) - y_n(t)| &\leq K^n M \frac{|t - t_0|^{n+1}}{(n+1)!} \leq K^n M \frac{h^{n+1}}{(n+1)!}. \end{aligned}$$

From this, it is easy to show that the sequence $\{y_n\}$ converges uniformly on $(t_0 - h, t_0 + h)$, and we denote the limit function by y^* .

Homework: Show that $\int_{t_0}^t f(s, y_n(s)) ds \to \int_{t_0}^t f(s, y^*(s)) ds$ as $n \to \infty$.

3. Since $y_{n+1}(t) = y_0 + \int_{t_0}^t f(s, y_n(s)) ds$, and $\{y_n\}$ converges to y^* , we obtain

$$y^*(t) = y_0 + \int_{t_0}^t f(s, y^*(s)) \,\mathrm{d}s$$
 on $(t_0 - h, t_0 + h)$.

Consequently, y^* is a solution to (5).