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Chapter 1 Introduction

What is an Ordinary Differential Equation ?
What is an Partial Differential Equation 7

Find u(t) such that F(u, v/, u",...,u™ t) =0.

ODE : for example, Z—? = u.
Pu u

More often ,we will consider ODE of the form

d

d_? = f(t,u) with a given f, or
d™y du d" Dy
_ = (t’u7—7..., )
dtm) dt dt(=1)

We use the following notation :

d

T i (0), (o)
d®qy )

POk u”, ()

sometimes we use y(t), vy, ¥'; or y(x), vy, .
Remark : ODE with parameters u(t,m)
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ou

E = f(ta u, m),
0 d
8—7: = d_QtL , m is NOT involved in differentiation.

Order : the highest number of derivatives involved.

System of ODE : for example

& = g(u,v)

{ G =f(uv)

Chapter 2 First Order Differential Equation

1st order linear ODE :

If f(t,u) = p(t)u(t) + g(t) is linear in u,

d
then d—? = pu + ¢ is a linear 1st order ODE.

I. Direct integration :

dy -y 3
Eg: £ = =4 —
& ur 2 2

d 3— d d
iﬁ:Ty’ Or —y:_x..(*)

Integrate both side, we get

Hence —In |3 — y| zg—i—c.



II. Integration factor :

p@)2 + p(a)% = ula)

[ Chain Rule : (fg)' = f'g+ f¢'. ]

Take pu(z) = exp(%), then 2 = lexp(%) = lu(z).
It follows that

o (5) @ {zor ()30 (5)

or

{o (3} = 5o (3)

Integrate both sides, we get exp(5)y = 3exp(5) + c.
Therefore y(x) = 3 + cexp(5F).
In general, a possible way to solve the first order linear equation,
Yy +p(@)y = g(x)
is to multiply it by a suitable integrating factor u(x). Then we have
p(@)y + p@)p(e)y = p(z)g(x).
Now we want to choose p(z) so that p/(x) = p(z)u(x). Indeed,
infp(o)] = [ pla)ds + ¢
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or

Example:

y(0) = o, where k, 3, are some constants.

e Method 1 : Direct integration

/

Write the equation as g —Fk, then integrate both sides.
Y

e Method 2 : Integrating factor
Choose u(z) = e then "y + keF?y = 0, or (e*y) = 0. Hence

y = ce ®. And by y(0) = 3o, we have ¢ = yo.
e Remark: Suppose

/ —
{ y1+ky1_07 and

{ Yo+ kya = g,
yl(iUo) =1

yg(l‘o) = O

Then (y; + yo) satisfies the following equation :

{ Y +ky =g,
y(xo) = y1.

e Eq.(1) has the solution y(x) = yo e **. Then y(z) — 0 as z — +oo in

the case of £ > 0. And y(x) — 0 as © — —oo in the case of k < 0.



Suppose 4’ + ky = ¢ for some constants k, g. Then

rek(o-g) =0 o (5 ) rao-g) o

Hence

(y(x) B %) - (y(%) - %) e~H@=a0),

If k>0 (k<0),as z — 400 (—00), we have y(z) — {. The solution of
k(y — 1) = 0 is called the equilibrium state. The equilibrium state of the

equation ¢y = f(y) is the set {y| f(y) = 0}.

Example:

{ xy + ky = 422, k is a constant
y(1) =2

Sol: We first find the integrating factor

k
/—dx: kln |x| + c.
x

kln|z|4c

Multiply by e = ec(eMlPhk = |z2|F = 2*, where we assume z > 0, then

l’ky/ + kxk_ly — 4xk+1’ or (l'ky)/ _ 4$k+1'
- X 4 ypht2 te 4 x? N c
ence xfy = ciie y= —.
YT 2 Y= k12 %k
2k

By the initial diti 1)=2 tc= ——.
y the initial condition (1) , we get ¢ )

Generalizations :



Given y' = f(y), we have
1 dy

fly)de
If we can find G(y) such that G'(x) = ﬁ, then

Loy =1

and hence
Gy(z)) =z +ec

The solution is implicitly defined by G.
Generalize to separable case :

Consider the equation

M(z) + N@)2 = o

If we can find Hj(z) = M(z) and Hj(y) = N(y), then

L (Hu(w) + Haly(a)) = 0

The solution is implicitly defined by
Hi(z) + Ha(y(z)) = ¢

Example : Consider the differential equation

J - Y Ccos T
{ 1+ 2y?
y(0) = 1.
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Sol:

<1+2y2

1
)y’:cosx, — <—+2y>y’:cosx.
Y Y

Then (In|y| + ¥*) = sinz + ¢, and ¢ = 1 by the initial condition y(0) = 1.
Hence the solution y(z) satisfies the relation In |y| + y* = sinz + 1.
Integral curve

From the equation fl—g = F(x,y), given (zo,y0), we get the slope F(xq,yo).

An integral curve is the curve y = f(z) satisfies Z—z = F(z, f(x)). But in

some equation of the form Hy(z) + Ha(y) = ¢ (y is implicitly defined), the

” may not exists for all z.

solution "y = f(z)
F(z0,y0) = 0 < tangent is horizontal.

F(z0,y0) = 00 < tangent is vertical.

Equilibrium :

In the equation y' = f(y), we say yo is an equilibrium iff f(yo) = 0.

Existence and Uniqueness of solutions

Consider the equation
dy 3x% +4x + 2

{ dr — 2y—1)
y(0) = 1.

We have 2(y — 1)dy = (32* + 4z + 2)dx. Integrate both sides, we obtain

y* — 2y = 23 +22° + 20 + ¢, and ¢ = —1.
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Hence y = 1 & v/23 + 222 4 22 — 1, there are two solutions.

Example 2 :
Consider
y =y
Then 2y~/3y = 2 or (y*/3) = 2.
Hence y?/® = %x + ¢, and ¢ = —%xo by the initial value y(zq) = 0.

Consequently, y = %[ 2 (z — x0) ]*/? for 2 > .
If o = 0, we get another solution y = 0.
Example 3 :
Consider
{ y' =y
y(0) = yo, where yy # 0 is a constant.

Then —y~2y' = —1, or (i)’ = —1. Therefore

1 1
- =—r+ —, or y(x) = o
y Yo L=wyuz

o If yo > 0, then y(z) — 400 as z — (y—lo)*, and the solution exists only
on (—oo, +).

’ Yo

o If yo = 0, then y = 0 is the solution defined on the whole real line.



o If yy <0, then y(z) - —oc0 as r — (y—lo)Jr, and the solution exists only

on (yio,oo).

These nonuniqueness or non-existence will not happen to linear first order
ODE’s.
Theorem: If p(t), g(t) are continuous on o < t < (3 and ty € (a, ), then

there exists the unique solution on (a, 3) for the equation

{ Y +p(t)y = g(t),
y(to) = Yo- '

Moreover, the solution is given by

o(6) = = [ty + /t:ms)g(s)ds] ,

where p(t) = exp{ f,, p(s) ds}.

Proof:

Let 1u(t) = exp{ [}, p(s)ds} on (a, 3).
Then 4/ (t) = p(t)u(?).

Multiply (t) on the both side of the equation, we get

p(t)y' () + p()p(t)y(t) = u(t)g(t).

That is



Hence

(1) (t) = (u)(to) + / u(s)g(s) ds,

and y(t) = = u(to)y(to) ] + [, 1(s)g(s) ds.

Theorem : For nonlinear case

{ y, = F<t7 y)
y(to) = Yo

If F and %—5 are continuous in a neighborhood of (g, o) then there exists
unique solution on the neighborhood.

Asymptotic Stability of Equilibrium States

Recall : If g, is the only solution to f(y) =0, and ¥’ = f(y), then

tlim y(t) = o, and { ji(y) <0 ify > o;

(y) > Oa lfy < Yo-
Growth rate proportional to population

Modeling with ¢ = h(y)y :
h(y) ~ r, if y is small;
Require ¢ h(y) decrease as y grows ;
h(y) <0, when y > k, for some constantk.

For example,
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Remark : this ODE is solvable by directly integrate
Logistic Growth

Qualitative analysis of 3/ = r(l — %)y, (without solving it explicitly)

1. Equilibrium states are y = 0, and y = k.
2. if 0 <y <k, then r(1 — %)y > 0.
3. if y > k, then r(1 — %)y < 0.

Thus y = k is an asymptotically stable equilibrium.
That is tlirgoy =k, if | y(0) — k| is small.

But 70”7 is an unstable equilibrium state.

That is tlirgoy = 0 only if y(0) = 0.

Threshold

Consider the equation

where r, T" are given positive constants.

1. y =0 and y = T are the critical points, corresponding to the equilib-

rium solutions y;(t) = 0 and yo(t) = T.
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2. If 0 <y < T, then % < 0, and y(t) decreases as t increases. Thus

y1(t) = 0 is an asymptotically stable equilibrium solution.

3. If y > T, then % > 0. Thus y»(t) = T is an unstable equilibrium

solution.

From this, T is called threshold.
Threshold + Logistic

Consider f(y) = —(1 —%)(1 = #)y, (0 <T < K ) then
1. y(0) < T = 1tlim y(t) =0,

2. y(0) >T = tlim y(t) = K.

Exact Equations

Let the differential equation
M(z,y) + N(z,y)y’ =0 (2)
be given. Suppose we can identify a function ¥ such that
Va2, y) = M(z,y), ¥y(z,y) = N(z,y),

and such that ¢ (z,y) = ¢ defines y = ¢(x) implicitly as a differentiable

function of z.
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Then

d

M(z,y) + Nz y)y = dol@,y) + y(2,9)y = —v(w, é(x))

and the equation becomes

d
T (,6(a)) = 0.

In this case Eq.(2) is said to be an exact differential equation.

The solution is given implicitly by

Y(z,y) =c,

for some constant c.
Theorem: Let M, N € C'(Q), Q € R? is simply connected. Then there exists

a function v (z,y) such that

Vo, y) = M(z,y); vy(z,y) = N(z,y),

if and only if M, (z,y) = Ny(z,y).
Integrating Factors

Let us multiply the equation

M(z,y)dx + N(z,y)dy =0

13



by a function g and then try to choose p so that

p(x,y)M (x, y)dx + p(z, y)N(z,y)dy = 0 (3)

is exact. By the above Theorem, we need

(uM)y = (4N )z
Hence, the integrating factor p must satisfy the equation
Mpy — Ny, + p(My — N;) = 0.

If such p can be found, then Eq.(3) will be exact.

Remark: The solution 1 may have more than one solution. But, unfortu-
nately, p is difficult to solve. The situations in which integrating factors can
be found occur when p is a function of only one of the variables x, y.

Assume that p = p(x), we have

dp
(nM)y = pM,, (UN)z :NNI""N%'
Thus, (uM), = (uN), is equivalent to
du M, — NI>
LA i BT 4
dz ( N a )

M, — N, . ) .
If yT is a function of z only, then p(z) can be found by solving the

1st order linear equation (4).
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Homework : Try p = u(y).
Example : (3zy + y*) + (2 + zy)y’ =0

Observe that
My<x>y) _Nx<xay) 1

N(z,y) T

Thus, p is a function of = only, and

dp_ p

der =
Hence

u(z) = .

Example : (32%y + zy?) + (2?y + 23)y’ =0

Note that M(z,y) = 322y + 2y, N(z,y) = 2%y + 2*, and
M,(z,y) = 32° + 2zy = No(,y).

Want to find ¢(z,y) s.t. ¥, = 2%y + 2* and ¢, = 322y + zy*.
Hence ¢(z,y) = # + 2%y + F(z) and ¢(x,y) = 23y + # + G(y).

Therefore ¢(z,y) = %yQ + 2% + constant.

z?y(x)?

5 T 23y(x) = constant.

Answer :
Existence and Uniqueness

We first prove the uniqueness of the solution as follow :
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Suppose the initial value problem

y/ = f(ta y)
{ o= (5)

has two solutions y; and ys».
Let w(t) = y1(t) — y2(t), then

{ yi(t) =t ()], vilto) = yo;
ys(t) = [t u2(t)], w2(to) = vo

and w'(t) = f[t,yl(t)} — f[t,yg(t)], and w(ty) = 0.

Hence
L/Usw fls,92(s)]} ds
and

uwns[|ﬂmm—f@mnm.

If df /dy is continuous,

[T <ar onthe region © = {(t5) ||t~ to| <a|y—w| <0},
Y

and we have

| F(s.) = Fs.0)

y28f
— — < — .
‘/yl ay(s,y)dy‘_M!yl Yo |

It follows that

w(t)| gM/t Lw(s) |ds.



Define U(t) = ftz | w(s) |ds, then
U(t) > 0, for t >t (6)

On the other hand,
U'(t) < [w(®) ],
. t
and since |w(t) | < Mfto |w(s)|ds = MU(t), we have
U < MU, or U — MU < 0.
Therefore,
(e”MU)Y <0 for t > tg.
Since U(tp) = 0, we obtain
U(t) <0, for t > to. (7)
by (6) and (7), U(t) = 0; and hence
w(t) =0, for t >ty on .
Homework: Show the same result for ¢ < ¢y on €.
Theorem: If f and g—; are continuous in a rectangle ), then there is some

interval |t — ¢y | < h < a in which there exists a unique solution y = ¢(t) of

the initial value problem(5).
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Existence of solution:

The method we use to find the solution is known as Picard’s iteration

method. First, let yo(t) = yo; and

y1(t) = vo +/ f(s,yo(s))ds.

to

Similarly, y» is obtained from y;:

Y2(t) = yo + /t f(s,y1(s))ds,

to

and in general,
t
i) =0+ [ Flson(o)ds
to

In this manner we generate the sequence of functions {y,|n =0,1,2,---}.

1. All y,,'s exist on the rectangle D = {(t,y) ‘]t—tol <h/|y—yo| < b},

where h = min{a, £} and M = max | f(t,y)|.
m (t,y)eQ

2. yn(t) converges.

We first estimate

Ynt1(t) — yn(t) ‘ as follows:

Yot (8) = (1) <m (5.9a(5)) = £,y (s)) |ds
- tO Yn— f a_f ’gds
<K [i | yn(8) = yna ‘ds
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where K = max ‘ %(t,y) ‘ And hence
(tyea |l Y

|y1(t) —yo() | < M|t —to],

_ 2
[12(t) — ()| < K [ M(s — to)ds = KMA5pL,
lys(t) — ()| < K [} KM(s — to)2ds = KM L5l

n+1 h"+1

n —t n
| Yns1(t) —un(t)| <K M% <K M(n+1)1~
From this, it is easy to show that the sequence {y, } converges uniformly

on (to — h,to + h), and we denote the limit function by y*.

Homework: Show that fti f(s,yn(s))ds — fti f(s,y*(s))ds as n — oo.

. Since yn11(t) = yo + fti f(s,yn(s))ds, and {y,} converges to y*, we

obtain

Yo () = g0 + / fsy7(s)ds  on (to— bty + h).

to

Consequently, y* is a solution to (5).
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